Quantification of groundwater recharge and its spatio-temporal variability in the Ganga river basin

2021 ◽  
pp. 1-22
Author(s):  
Jaydeo K. Dharpure ◽  
Ajanta Goswami ◽  
Akansha Patel ◽  
Anil V. Kulkarni
Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1527
Author(s):  
Wilmar L. Cerón ◽  
Mary T. Kayano ◽  
Camilo Ocampo-Marulanda ◽  
Teresita Canchala ◽  
Irma Ayes Rivera ◽  
...  

The Cauca River rises in the Colombian Andes and is the main tributary of the Magdalena River, which drains to the Caribbean Sea. The La Balsa station monitors the Upper Cauca basin and is located just downstream of La Salvajina hydroelectric facility. At this station, the discharge time series for November–January during 1950–2019 shows a statistically significant downward break, and change of distribution after 1986 has been documented after La Salvajina started operation. We assessed the spatio-temporal variability of hydroclimatology in the upper Cauca River basin during the pre- and post-Salvajina dam periods to better understand this break. Post-Salvajina, low (high) discharge events are linked to negative (positive) precipitation and soil moisture anomalies that are greater in magnitude and extension than those recorded in the pre-Salvajina period in response to the more intense El Niño events (more intense and frequent central La Niña events) after 1986. Therefore, it is necessary to consider possible future rainfall scenarios and non-infrastructure measures (i.e., reforestation, territorial planning, integrated watershed management, etc.) to mitigate floods and droughts impacts. The contribution of this study is to provide evidence for the need for foresight in the design of any structural or non-structural flood measures.


2021 ◽  
Author(s):  
Naga Venkata Satish Laveti ◽  
Suresh A. Kartha ◽  
Subashisa Dutta

<p>River-Aquifer Interaction is a natural and complex phenomenon for understanding its physical dynamic processes. These interactions highly vary with time and space and are to be investigated at river reach scale. The present study aims to understand and quantify the spatio-temporal variations of river-aquifer interaction process in Kosi river basin, India. This basin is majorly dominated with agricultural lands and irrigation requirement of the crops are mostly met by groundwater. In order to quantify the river-aquifer exchange flux at reach scale, a physically based sub-surface hydrological model has been carried for the study area. For this purpose, high resolution remotely sensed evapotranspiration data and groundwater recharge (estimated using soil water budget method method) along with other aquifer parameters were utilized for simulating the monthly groundwater levels as well as exchange flux between river and aquifer. The model results showed that simulated groundwater levels were well calibrated and validated with measured groundwater levels. Further, this calibrated groundwater flow model has been used to quantify the river-aquifer exchange flux. Based on the obtained exchange flux values, three different interaction zones were identified from upstream (Kosi barrage) to downstream (confluence point with Ganga river) in the study reach. It is observed that the river mostly loses water to the aquifer (as influent) in Zone I (80km from upstream) and the river mostly gains water from the aquifer (as effluent) in Zone III (40 km above downstream to confluence point). Whereas, the river has a combination of both losing and gaining natures in Zone II (between Zone I and III). From this study, it can be concluded that use of satellite remote sensing inputs (groundwater recharge and evapotranspiration) in the sub-surface hydrological model, facilitated to improve the assessment and understanding river-aquifer interaction process in an alluvial River basin.</p>


Geomorphology ◽  
2020 ◽  
Vol 350 ◽  
pp. 106888 ◽  
Author(s):  
Rahul K. Kaushal ◽  
Ankita Sarkar ◽  
Kanchan Mishra ◽  
Rajiv Sinha ◽  
Santosh Nepal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document