Environmental performance of renewable energy systems with the application of life-cycle assessment: a multi-Si photovoltaic module case study

2012 ◽  
Vol 29 (4) ◽  
pp. 231-238 ◽  
Author(s):  
G. Gaidajis ◽  
K. Angelakoglou
2020 ◽  
Vol 12 (7) ◽  
pp. 2786 ◽  
Author(s):  
Riccardo Basosi ◽  
Roberto Bonciani ◽  
Dario Frosali ◽  
Giampaolo Manfrida ◽  
Maria Laura Parisi ◽  
...  

A life cycle analysis was performed for the assessment of the environmental performances of three existing Italian power plants of comparable nominal power operating with different sources of renewable energy: Geothermal, solar, and wind. Primary data were used for building the life cycle inventories. The results are characterized by employing a wide portfolio of environmental indicators employing the ReCiPe 2016 and the ILCD 2011 Midpoint+ methods; normalization and weighting are also applied using the ReCiPe 2016 method at the endpoint level. The midpoint results demonstrate a good eco-profile of the geothermal power plant compared to other renewable energy systems and a definite step forward over the performance of the national energy mix. The Eco-Point single score calculation showed that wind energy is the best technology with a value of 0.0012 Eco-points/kWh, a result in line with previously documented life cycle analysis studies. Nevertheless, the geothermal power plant achieved a value of 0.0177 Eco-points/kWh which is close to that calculated for the photovoltaic plant (0.0087 Eco-points/kWh) and much lower than the national energy mix one (0.1240 Eco-points/kWh). Also, a scenario analysis allowed for a critical discussion about potential improvements to the environmental performance of the geothermal power plant.


2019 ◽  
Vol 11 (21) ◽  
pp. 5889 ◽  
Author(s):  
Ismail Abubakar Jumare ◽  
Ramchandra Bhandari ◽  
Abdellatif Zerga

Life cycle assessment is a crucial tool in evaluating systems performances for sustainability and decision-making. This paper provided environmental impact of integrating renewable energy systems to the utility-grid based on a baseline optimized energy production data from “HOMER” for renewable systems modelling of a site in northern Nigeria. The ultimate goal was to ascertain the best hybrid option(s) in sustaining the environment. Different assumptions and scenarios were modelled and simulated using Ganzleitlichen Bilanz (GaBi). Uncertainty analysis was ensured to the impact data based on pedigree-matrix and Excel-program, as well as overall policy relevance. The results of the impact categories revealed first scenario (i.e., conventional path-based) with the highest impacts on global warming potential (GWP), acidification potential (AP), human toxicity potential (HTP), and abiotic depletion potential (ADPfossils). The lowest impacts arise in the renewable-based scenarios for all the considered categories except the Ozone-layer depletion potential Category where the highest contribution falls in the third scenario (i.e., photovoltaic (PV)/biomass-biogas system) although all values being infinitesimal. In quantitative terms, the reduction in the GWP from the highest being the first scenario to the lowest being the fourth scenario (i.e., wind/biomass-biogas system) was 96.5%. Hence, with the outstanding contributions of the hybrid renewable systems, adopting them especially the lowest impact scenarios with expansions is relevant for environmental sustainability.


2020 ◽  
Author(s):  
Chris Fogwill ◽  
Zoe Robinson ◽  
David Healey ◽  
Sharon George ◽  
Phillip Catney ◽  
...  

<p>The UN Sustainable Development Goals provide a framework towards a more sustainable future.  Although each goal can be targeted separately, the greatest benefit is to be had in ensuring that projects exploit synergies between different goals, are developed with an interdisciplinary perspective, and integrate different stakeholders across academia, business, government, NGOs, and communities.</p><p>In combination, Renewable Energy Systems (RES) and distributed ‘smart’ energy networks (SEN) provide opportunities to drive down CO<sub>2</sub> emissions, clearly addressing SDG13, ‘climate action’.  However, significant potential exists to positively contribute to a wider suite of goals as well as the potential to negatively impact other aspects. Addressing these tensions and opportunities requires development of a detailed understanding of the full societal, economic and environmental impacts of such developments.</p><p>Such integrated renewable energy systems and smart energy networks are in the early stages of development.  Taking a ‘living laboratory approach’ enables the development and live-testing of new energy systems, including the opportunity to consider full life cycle assessment impacts and benefits, as well as investigate and co-develop interactions with end-users.  Here we outline the potential of one of Europe’s largest ‘at scale’ multi-vector smart energy systems, developed as a ‘living laboratory’ at Keele University in the UK, to demonstrate an integrated approach to addressing the UN’s SDGs through integrated RES-SEN systems. The scale and scope of the project provides the opportunity for the detailed analysis required to provide a model of a scalable, integrated RES-SEN approach as part of an evolving energy landscape, where multi-vector renewables, and distributed energy and storage provide new models for decarbonisation, whilst also contributing more widely to the UN’s SDGs.</p><p>This project represents an ambitious and innovative demonstrator programme that brings together multiple stakeholders to explore the potential for addressing the core SDGs of ‘climate action’, ‘affordable and clean energy’, ‘sustainable cities and communities’, ‘decent work and economic growth’, and ‘industry, innovation and infrastructure’, while exploring the additional potential impacts and benefits to ‘quality education’, ‘life on land’ and ‘partnerships for the goal’. The programme of work focusses on technical developments, societal adoption and full economic life-cycle assessment, which combined are developing a blue print for the integration of RES-SEN technologies across the evolving energy landscape by working in partnership with key industrial and commercial partners to contribute to a wide array of the UN’s SDGs.  </p><p> </p>


2020 ◽  
Vol 52 ◽  
pp. 101843 ◽  
Author(s):  
Emeli Lalesca Aparecida da Guarda ◽  
Renata Mansuelo Alves Domingos ◽  
Stefany Hoffmann Martins Jorge ◽  
Luciane Cleonice Durante ◽  
João Carlos Machado Sanches ◽  
...  

2021 ◽  
Vol 163 ◽  
pp. 1523-1535
Author(s):  
José Alfonso Martillo Aseffe ◽  
Aldemar Martínez González ◽  
René Lesme Jaén ◽  
Electo Eduardo Silva Lora

Author(s):  
Daryl R. Myers ◽  
Thomas L. Stoffel ◽  
Ibrahim Reda ◽  
Stephen M. Wilcox ◽  
Afshin M. Andreas

Abstract The Measurements and Instrumentation Team within the Distributed Energy Resources Center at the National Renewable Energy Laboratory, NREL, calibrates pyranometers for outdoor testing solar energy conversion systems. The team also supports climate change research programs. These activities led NREL to improve pyranometer calibrations. Low thermal-offset radiometers measuring the sky diffuse component of the reference solar irradiance removes bias errors on the order of 20 Watts per square meter (W/m2) in the calibration reference irradiance. Zenith angle dependent corrections to responsivities of pyranometers removes 15 to 30 W/m2 bias errors from field measurements. Detailed uncertainty analysis of our outdoor calibration process shows a 20% reduction in the uncertainty in the responsivity of pyranometers. These improvements affect photovoltaic module and array performance characterization, assessment of solar resources for design, sizing, and deployment of solar renewable energy systems, and ground-based validation of satellite-derived solar radiation fluxes.


Sign in / Sign up

Export Citation Format

Share Document