corn cob
Recently Published Documents


TOTAL DOCUMENTS

707
(FIVE YEARS 259)

H-INDEX

37
(FIVE YEARS 8)

2022 ◽  
Vol 177 ◽  
pp. 114421
Author(s):  
Hélène de Baynast ◽  
Amélie Tribot ◽  
Benjamin Niez ◽  
Fabrice Audonnet ◽  
Eric Badel ◽  
...  
Keyword(s):  

Author(s):  
Emmanuel Ikechukwu Ugwu ◽  
Jonah Chukwuemeka Agunwamba

Corn Cob ash was used in competitive adsorption of copper, zinc, and chromium from wastewater. The central composite design; a sub-set of response surface methodology was used to optimize the adsorption of the heavy metals. The result of the statistical parameters showed the coefficient of determination (R2) of 1.000, 0.999, and 1.000 for copper, zinc, and chromium respectively. The optimal conditions obtained for adsorbent dosage, initial concentration, temperature, contact time, and particle size were 13.20 mg, 79.72 mg/l, 34.95 °C, 40.38 min, and 1400 µm, respectively with the desirability of 1.000. The predicted and the actual values of metal removal obtained were 69.41%, 76.37%, as well as 70.44%, 72.50%, 77.90 % and 71.00% for copper, zinc, and chromium respectively. The ressult indicated a good conformity between the model predicted values and the actual values, thus having small errors of 3.09%, 1.53 % and 0.56 % for copper, zinc, and chromium respectively.


2022 ◽  
pp. 0734242X2110697
Author(s):  
Harsha Wakudkar ◽  
Sudhir Jain

Corn cob is one of the agricultural waste materials subjected to improper burning, which creates pollution. It can be used for the production of green technologies for further applications. Carbonisation or slow pyrolysis could be promising alternative to burning. It has many applications, such as soil ameliorant, waste water treatment, carbon sequestration, composting, supercapacitor, fuel cell and biocomposites material. It motivated to investigate the suitability of corn cob as a potential material for biochar production and its application. The advanced form of analysis, such as thermogravimetric, scanning electron microscopy, surface area, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and Raman spectroscopy, is elaborated for in-depth knowledge of characteristics. The hypothesis is that if the available corn cob is used for biochar production, it will reduce the carbon dioxide (CO2) emission. On a global level, conversion of available corn cob into biochar is expected to reduce CO2 emission by 0.13 Gt per year. The reduction in CO2 emission also favours economy. If 1 tonne of biomass per year is converted into biochar, 0.82 tonnes of CO2 can be reduced per year and by considering the emission cost of Rs 1800 per tonne, the cost saving would be Rs 1476 per year. The presented mini-review article provides an outline of the state-of-art information on corn cob biochar and its novel application. It will be helpful to scientific domain to find new opportunities in biochar research and also the humanity will be benefitted due to reduction in greenhouse gases.


2022 ◽  
Vol 1048 ◽  
pp. 459-467
Author(s):  
Sadamanti Sireesha ◽  
Utkarsh Upadhyay ◽  
Inkollu Sreedhar ◽  
K.L. Anitha

Heavy metal contamination has been one of the primary environmental concerns for many years in most developing countries. As the industries continue to search for low-cost and efficient adsorbents to treat their effluents contaminated with these toxic metal ions, biomass-based adsorbents have gained much attention. This work exploits such ten different biomass-based adsorbents (namely, Karanja de-oiled cake, Neem de-oiled cake, Neem leaves, Moringa Leaves, Bagasse, Mango Kernel, Wheat Bran, Eucalyptus, Fly ash, and Corn cob) for adsorption of copper ions in particular. Further, selected adsorbents (namely Karanja de-oiled cake, Neem de-oiled cake, Bagasse, Wheat Bran and Mango Kernel) were taken to the next stage and modified to biochar and tested again for copper removal. Among the biomass-based adsorbents, the highest adsorption capacity was observed for Neem de-oiled cake (equal to 9.6 mg/g). While for biochar-based adsorbents, Bagasse showed the highest adsorption capacity for copper (equivalent to 13.0 mg/g).


2022 ◽  
Vol 58 (4) ◽  
pp. 1-8
Author(s):  
Cosmin Mihai Miritoiu ◽  
Marius Marinel Stanescu ◽  
Dumitru Bolcu ◽  
Alexandru Ioan Radoi ◽  
Claudiu Nicolicescu ◽  
...  

In this paper we have created some composites reinforced with corn cob powder and the matrix was made by a combination between Resoltech 1050 resin with its Resoltech 1058 hardener. For the composites manufacturing, we have used the manual casting technique. For the new manufactured composites, we have determined the mechanical properties from the tensile test according to ASTM D3039: Young modulus, breaking strength and elongation at break. We have also molded samples for the compression test according to ASTM D695-15 and we have determined the breaking strength. The tensile and compression tests were made on universal testing machines. In the end, we have determined also the dynamic mechanical properties for the studied material by clamping the samples at one edge and leaving the samples unconstrained at the other edge. At the unconstrained edge we have placed a Bruel&Kjaer accelerometer which recorded the samples free vibrations. From the free vibrations recording and Euler-Bernoulli theory, we have determined the next dynamic mechanical properties: damping factor per unit mass and length, eigenfrequency, dynamic modulus of elasticity, loss factor and dynamic rigidity. From the experimental results, we have obtained increased breaking strength values for the proposed material at compression compared to the tensile test. Compared to similar materials studied in the engineering literature, we have obtained increased compression breaking strength.


Author(s):  
Pei Wu ◽  
Xia Zhang ◽  
Mengke Li ◽  
Jia Yang ◽  
Xuanwei peng ◽  
...  
Keyword(s):  
Corn Cob ◽  

Author(s):  
Ananda Selvan

Abstract: A light weight concrete block using granulated corncob as an aggregate is investigated in this research work. Considering corn cob after removing the corn is said to be agricultural waste. Finding practical uses of this waste for manufacturing concrete block may preserve the environment and also allow green technologies. These concrete blocks are studied in terms of compressive strength, water absorption; density and unit weight were experimentally studied. The results obtained are submitted which shows that corn cob blocks have sufficient material properties for non-structural application in building for construction of partition walls. This is the alternative for blocks in expanded clay, expanded polystyrene, particles of cork, coconut coir etc. In this research a clay brick is compared as a reference block or control block. Nine specimen blocks were prepared in a size of 400mm x 200mm x 100mm and cured for 7 days, 14 days and 28 days and subjected to compressive strength test, water absorption test and density. The results are compared with conventional clay bricks. Corn cob blocks offered a good strength, low density and less water absorption. Keywords: Agricultural waste, compressive strength, durability, granulated corn


Author(s):  
Fabiola Sandoval-Salas ◽  
Carlos Méndez-Carreto ◽  
Christell Barrales-Fernández ◽  
Graciela Ortega-Avila

Bioethanol production from lignocellulosic materials has several environmental and economic advantages. In this work, corn cob was used to produce ethanol by fermentation. The cob was grounded, hydrolyzed chemically, and then enzymatically. Later, hydrolysates were used as a carbon source to formulate culture media that were inoculated with Saccharomyces cerevisiae; hollocellulose content was quantified by the ASTM D-1104 method; cellulose content by the TAPPTI 212 method; lignin content by the NREL / TP-510-42618 method; and ethanol was quantified by HPLC. In fermentation, bioethanol yields of up to 3.5 g / L were found, equivalent to YP/S value of 0.46, representing approximately 90% of the theoretical yield.


2021 ◽  
Vol 11 (1-2) ◽  
pp. 9-15
Author(s):  
Oluseyi Omoniyi Eniolorunda ◽  
Oladipupo David Olamilusi ◽  
Mariam Olubunmi Ogunde ◽  
Joseph Lomba Uloko

2021 ◽  
Vol 15 (2) ◽  
pp. 63
Author(s):  
Sebastianus Dani Ganesha ◽  
Salsabila Maris Syahputri ◽  
Samuel Yedija Liem ◽  
Joko Prasetyo ◽  
Harum Azizah Darojati

Post-harvest activities of agricultural products often generate wastes. One of the agricultural wastes that increase every year is corn cobs, which have a high cellulose content and can potentially be used as raw materials for making natural fibers. Therefore, this study aims to examine several potential commercial products from corn cobs. The method used is a literature study by tracing the sources of previous writings. Furthermore, how to process corn cobs waste for the manufacture of natural fibers and commercial products will be discussed. From the previously traced sources in the utilization of corn cobs waste, 4 products were obtained. The results are nano hydrogels based on gamma radiation, activated carbon with a carbonation process, bioethanol using the SSF process, and the use of corn cob cellulose as good-quality brake lining.


Sign in / Sign up

Export Citation Format

Share Document