Design and economic assessment of alternative renewable energy systems using capital cost projections: A case study for Saudi Arabia

2021 ◽  
Vol 48 ◽  
pp. 101675
Author(s):  
Hassan Z. Al Garni ◽  
Abdullahi Abubakar Mas'ud ◽  
David Wright
2020 ◽  
Vol 52 ◽  
pp. 101843 ◽  
Author(s):  
Emeli Lalesca Aparecida da Guarda ◽  
Renata Mansuelo Alves Domingos ◽  
Stefany Hoffmann Martins Jorge ◽  
Luciane Cleonice Durante ◽  
João Carlos Machado Sanches ◽  
...  

2018 ◽  
Author(s):  
Ammar H. A. Dehwah ◽  
Moncef Krarti

To meet the increasing energy demand and to shave the peak, the Kingdom of Saudi Arabia (KSA) is currently planning to invest more on renewable energy (RE) seeking diversity of energy resources. Through the integration of demand side management measures and renewable energy distributed generation (DG) systems, the study outlined in this paper aims at investigating the potential of hybrid renewable energy systems in supplying energy demands for residential communities in an oil-rich country. The residential community considered in this study, located in the eastern region of KSA, has an annual electrical usage of 1,174 GWh and an electrical peak load of 335 MW that are met solely by the grid. The results of the analyses indicated that the implementation of cost-effective energy efficiency measures (EEMs) reduced electricity usage by 38% and peak demand by 51% as well as CO2 emissions by 38%. While, the analysis of the hybrid systems showed that purchasing electricity from the grid is the best option with a levelized cost of energy (LCOE) of $0.1/kWh based on the current renewable energy market and economic conditions of KSA, RE systems can be cost-effective to meet the loads of the residential communities under specific electricity prices and capital cost levels. This study can assist KSA decision makers establish effective and targeted policies that can facilitate and promote renewable technologies.


Author(s):  
Troy V. Nguyen ◽  
Aldo Fabregas Ariza ◽  
Nicholas W. Miller ◽  
Ismael Cremer

Airports are key components of the global transportation system and are the subject of continuous sustainability improvements. Promoting clean energy sources and energy-efficient practices can help attain major sustainability goals at airports around the world. Although small airports are greater in number, most of the “sustainability” attention has been given to large airports. Small airports are typically located in rural areas, making them excellent candidates for renewable energy. This paper focuses on the planning and selection of renewable energy systems as a strategic method to reduce energy use and increase electric power reliability at small-scale airport facilities. The target system may use a combination of renewable energy sources to produce electrical power for the on-site facilities. The framework details include methods of energy collection, power production, and energy storage that are environmentally sound. A small airport serving a dual role as a flight training facility was used as case study. In the case study, systems engineering methodology was adapted to the small airport/ renewable energy domain in order to effectively identify stakeholders and elicit user requirements. These, coupled with industrial standards, relevant government regulations, and a priori constraints, are used to derive the initial requirements that serve as the basis for a preliminary design. The proposed framework also contains provisions for an on-site assessment of existing airport energy needs, sources, providers, and location-specific assets and challenges.


Sign in / Sign up

Export Citation Format

Share Document