A Combined Molecular Dynamics and Finite Element Analysis of Contact and Adhesion of a Rough Sphere and a Flat Surface

2011 ◽  
Vol 54 (6) ◽  
pp. 920-928 ◽  
Author(s):  
H. Eid ◽  
G. G. Adams ◽  
N. E. McGruer ◽  
A. Fortini ◽  
S. Buldyrev ◽  
...  
2021 ◽  
Author(s):  
Anda Trifan ◽  
Defne Gorgun ◽  
Zongyi Li ◽  
Alexander Brace ◽  
Maxim Zvyagin ◽  
...  

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.


Author(s):  
T. Kuwayama ◽  
K. Hashiguchi ◽  
N. Suzuki ◽  
N. Yoshinaga ◽  
S. Ogawa

Accurate prediction of contact behaviour between machine tools and metals is required for the mechanical design of machinery. In this article, the numerical analysis of the contact behaviour is described by incorporating the subloading-overstress model [6] which is capable of describing the contact behaviour for a wide range of sliding velocity including the increase of coefficient of friction with the increase of sliding velocity. And its validity is verified by the comparison with some test results. First, in order to examine the influence of sliding velocities on the friction properties, the flat-surface friction tests for lubricated interfaces between galvannealed steel sheet and SKD-11 tool steel were performed. As a result, It is observed that the friction smoothly translate to kinetic friction, after exhibiting the peak at the static friction. In addition, it is observed that the higher the sliding velocity, the larger the friction resistance, meaning the positive rate sensitivity. Then the subloading-overstress model is implemented in the finite element analysis program ABAQUS/Standard, and it is used to simulate the flat-surface friction tests. The predictions from the finite element analysis are shown to be in very good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document