A SERIAL SOLUTION FOR THE 2-D INVERSE HEAT CONDUCTION PROBLEM FOR ESTIMATING MULTIPLE HEAT FLUX COMPONENTS

2004 ◽  
Vol 45 (6) ◽  
pp. 541-563 ◽  
Author(s):  
T. S. Kumar
1999 ◽  
Vol 121 (3) ◽  
pp. 708-711 ◽  
Author(s):  
V. Petrushevsky ◽  
S. Cohen

A one-dimensional, nonlinear inverse heat conduction problem with surface ablation is considered. In-depth temperature measurements are used to restore the heat flux and the surface recession history. The presented method elaborates a whole domain, parameter estimation approach with the heat flux approximated by Fourier series. Two versions of the method are proposed: with a constant order and with a variable order of the Fourier series. The surface recession is found by a direct heat transfer solution under the estimated heat flux.


2013 ◽  
Vol 21 (5) ◽  
pp. 854-864 ◽  
Author(s):  
Jean-Laurent Gardarein ◽  
Jonathan Gaspar ◽  
Yann Corre ◽  
Stephane Devaux ◽  
Fabrice Rigollet ◽  
...  

1988 ◽  
Vol 110 (1) ◽  
pp. 30-37 ◽  
Author(s):  
M. Raynaud ◽  
J. V. Beck

The inverse heat conduction problem involves the calculation of the surface heat flux from transient measured temperatures inside solids. The deviation of the estimated heat flux from the true heat flux due to stabilization procedures is called the deterministic bias. This paper defines two test problems that show the tradeoff between deterministic bias and sensitivity to measurement errors of inverse methods. For a linear problem, with the statistical assumptions of additive and uncorrelated errors having constant variance and zero mean, the second test case gives the standard deviation of the estimated heat flux. A methodology for the quantitative comparison of deterministic bias and standard deviation of inverse methods is proposed. Four numerical inverse methods are compared.


Sign in / Sign up

Export Citation Format

Share Document