Two-Dimensional Two-Fluid Two-Phase Flow Simulation Using an Approximate Jacobian Matrix for HLL Scheme

2010 ◽  
Vol 56 (5) ◽  
pp. 372-392 ◽  
Author(s):  
Geum-Su Yeom ◽  
Keun-Shik Chang
Author(s):  
Aurelia Chenu ◽  
Konstantin Mikityuk ◽  
Rakesh Chawla

In the framework of PSI’s FAST code system, the TRACE thermal-hydraulics code is being extended for representation of sodium two-phase flow. As the currently available version (v.5) is limited to the simulation of only single-phase sodium flow, its applicability range is not enough to study the behavior of a Sodium-cooled Fast Reactor (SFR) during a transient in which boiling is anticipated. The work reported here concerns the extension of the two-fluid models, which are available in TRACE for steam-water, to sodium two-phase flow simulation. The conventional correlations for ordinary gas-liquid flows are used as basis, with optional correlations specific to liquid metal when necessary. A number of new models for representation of the constitutive equations specific to sodium, with a particular emphasis on the interfacial transfer mechanisms, have been implemented and compared with the original closure models. As a first application, the extended TRACE code has been used to model experiments that simulate a loss-of-flow (LOF) accident in a SFR. The comparison of the computed results, with both the experimental data and SIMMER-III code predictions, has enabled validation of the capability of the modified TRACE code to predict sodium boiling onset, flow regimes, dryout, flow reversal, etc. The performed study is a first-of-a-kind application of the TRACE code to two-phase sodium flow. Other integral experiments are planned to be simulated to further develop and validate the two-phase sodium flow methodology.


2004 ◽  
Vol 45 (10) ◽  
pp. 1049-1066 ◽  
Author(s):  
Moon-Sun Chung ◽  
Seung-Kyung Pak ◽  
Keun-Shik Chang

Author(s):  
Moon-Sun Chung ◽  
Sung-Jae Lee ◽  
Jong-Won Kim

In this study, we will suggest a two-dimensional two-fluid model considering the effect of mass and momentum interactions to simulate more realistic two-phase flow than the conventional model did. A hyperbolic two-fluid model had been developed for one-dimensional two-phase flow by Chung et al. [1] and it has been improved and applied to analyze one-dimensional two-phase flow problem including surface tension effect for either ordinary pipe system or minichannels. However, in order to simulate the two-dimensional two-phase flow problem efficiently in the future, the above one-dimensional model has need to be extended to two-dimensional equations and adopted to an upwind numerical method.


Sign in / Sign up

Export Citation Format

Share Document