WAVE PHENOMENA AND ONE-DIMENSIONAL TWO-PHASE FLOW MODELS. PART III: GENERAL CASE; GENERALIZED DRIFT FLUX MODELS; OTHER TWO-FLUID MODELS

1997 ◽  
Vol 9 (1) ◽  
pp. 63-107 ◽  
Author(s):  
J. A. Boure
Author(s):  
Takashi Hibiki

The article “One-dimensional drift-flux correlations for two-phase flow in medium-size channels” written by Takashi Hibiki, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 17 April 2019 without open access. After publication in Volume 1, Issue 2, page 85–100, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Aurelia Chenu ◽  
Konstantin Mikityuk ◽  
Rakesh Chawla

In the framework of PSI’s FAST code system, the TRACE thermal-hydraulics code is being extended for representation of sodium two-phase flow. As the currently available version (v.5) is limited to the simulation of only single-phase sodium flow, its applicability range is not enough to study the behavior of a Sodium-cooled Fast Reactor (SFR) during a transient in which boiling is anticipated. The work reported here concerns the extension of the two-fluid models, which are available in TRACE for steam-water, to sodium two-phase flow simulation. The conventional correlations for ordinary gas-liquid flows are used as basis, with optional correlations specific to liquid metal when necessary. A number of new models for representation of the constitutive equations specific to sodium, with a particular emphasis on the interfacial transfer mechanisms, have been implemented and compared with the original closure models. As a first application, the extended TRACE code has been used to model experiments that simulate a loss-of-flow (LOF) accident in a SFR. The comparison of the computed results, with both the experimental data and SIMMER-III code predictions, has enabled validation of the capability of the modified TRACE code to predict sodium boiling onset, flow regimes, dryout, flow reversal, etc. The performed study is a first-of-a-kind application of the TRACE code to two-phase sodium flow. Other integral experiments are planned to be simulated to further develop and validate the two-phase sodium flow methodology.


2013 ◽  
Vol 737 ◽  
pp. 146-175 ◽  
Author(s):  
S. LeMartelot ◽  
R. Saurel ◽  
O. Le Métayer

AbstractExact compressible one-dimensional nozzle flow solutions at steady state are determined in various limit situations of two-phase liquid–gas mixtures. First, the exact solution for a pure liquid nozzle flow is determined in the context of fluids governed by the compressible Euler equations and the ‘stiffened gas’ equation of state. It is an extension of the well-known ideal-gas steady nozzle flow solution. Various two-phase flow models are then addressed, all corresponding to limit situations of partial equilibrium among the phases. The first limit situation corresponds to the two-phase flow model of Kapila et al. (Phys. Fluids, vol. 13, 2001, pp. 3002–3024), where both phases evolve in mechanical equilibrium only. This model contains two entropies, two temperatures and non-conventional shock relations. The second one corresponds to a two-phase model where the phases evolve in both mechanical and thermal equilibrium. The last one corresponds to a model describing a liquid–vapour mixture in thermodynamic equilibrium. They all correspond to two-phase mixtures where the various relaxation effects are either stiff or absent. In all instances, the various flow regimes (subsonic, subsonic–supersonic, and supersonic with shock) are unambiguously determined, as well as various nozzle solution profiles.


2012 ◽  
Vol 40 ◽  
pp. 166-177 ◽  
Author(s):  
Shao-Wen Chen ◽  
Yang Liu ◽  
Takashi Hibiki ◽  
Mamoru Ishii ◽  
Yoshitaka Yoshida ◽  
...  

Author(s):  
Takashi HIBIKI ◽  
Hiroshi GODA ◽  
Seungjin KIM ◽  
Mamoru ISHII ◽  
Jennifer UHLE

Sign in / Sign up

Export Citation Format

Share Document