Teaching Problem Solving to Students Receiving Tiered Interventions Using the Concrete-Representational-Abstract Sequence and Schema-Based Instruction

Author(s):  
Margaret M. Flores ◽  
Vanessa M. Hinton ◽  
Megan E. Burton
2021 ◽  
pp. 073194872110614
Author(s):  
Irene Polo-Blanco ◽  
María J. González López ◽  
Alicia Bruno ◽  
Jon González-Sánchez

This study, which used a multiple baseline across students’ design, examines the effectiveness of a modified schema-based instructional approach to improve the mathematical word problem-solving performance of three students with mild intellectual disability, two of them with autism spectrum disorder. Following the intervention, the three students improved their performance when solving addition and subtraction change word problems; however, their performance was inconsistent with change word problems. The effects of the instruction were generalized to two-step addition and subtraction word problems for the three participants. Moreover, the results were generalized to an untrained setting and were maintained 8 weeks after the instruction. The implications of these findings for teaching problem-solving skills to students with intellectual disability are discussed.


2019 ◽  
Author(s):  
Corey Peltier ◽  
Mindy E Lingo ◽  
Faye Autry-Schreffler ◽  
Malarie Deardorff ◽  
Leslie Mathews ◽  
...  

Students identified with a specific learning disability (SLD) experience difficulty with mathematical problem solving. One specific intervention identified as a promising practice for students with a SLD is schema-based instruction (SBI). The current projects aimed to tests the efficacy of SBI under routine conditions. This extends prior literature by (a) using a teacher as the implementer, (b) allowing flexibility in the intervention protocol, (c) condensing the duration of intervention sessions, and (d) providing instruction in small group settings. In addition, we examined student problem solving performance on word problems requiring two-steps and combined schema structures. We used a multiple-probe design across three groups of fifth-grade participants (n = 7) receiving supplemental instruction in a resource room setting. Results indicated a functional relation between SBI and problem-solving performance for all students on simple structure word problems, with the magnitude of effects varying across cases. The NAP, Tau, and BC-SMD effect sizes were used to quantify effects. Implications were discussed in regard to systematic replication and conditions that may impact fidelity.


Author(s):  
Jenny Root ◽  
Alicia Saunders ◽  
Fred Spooner ◽  
Chelsi Brosh

The ability to solve mathematical problems related to purchasing and personal finance is important in promoting skill generalization and increasing independence for individuals with moderate intellectual disabilities (IDs). Using a multiple probe across participant design, this study investigated the effects of modified schema-based instruction (MSBI) on personal finance problem solving skills, purchasing an item on sale or leaving a tip, and using a calculator or iDevice (i.e., iPhone or iPad) for three middle school students diagnosed with a moderate ID. The results showed a functional relation between MSBI using a calculator on the participant’s ability to solve addition and subtraction personal finance word problems and generalize to iDevices. The findings of this study provide several implications for practice and offer suggestions for future research.


1977 ◽  
Vol 128 (2) ◽  
pp. 271-272 ◽  
Author(s):  
RE Miller ◽  
BJ Andrew

2018 ◽  
Vol 12 (2) ◽  
pp. 77-97
Author(s):  
Ana Kuzle

Problem solving in Germany has roots in mathematics and psychology but it found its way to schools and classrooms, especially through German Kultusministerkonferenz, which represents all government departments of education. For the problem solving standard to get implemented in schools, a large scale dissemination through continuous professional development is very much needed, as the current mathematics teachers are not qualified to do so. As a consequence, one organ in Germany focuses on setting up courses for teacher educators who can “multiply” what they have learned and set up their own professional development courses for teachers. However, before attaining to this work, it is crucial to have an understanding what conceptions about teaching problem solving in mathematics classroom mathematics teacher educators hold. In this research report, I focus on mathematics teacher educators’ conceptions about problem solving standard and their effects regarding a large-scale dissemination.


Author(s):  
Olive Chapman

In recent years, considerable attention has been given to the knowledge teachers ought to hold for teaching mathematics. Teachers need to hold knowledge of mathematical problem solving for themselves as problem solvers and to help students to become better problem solvers. Thus, a teacher’s knowledge of and for teaching problem solving must be broader than general ability in problem solving. In this article a category-based perspective is used to discuss the types of knowledge that should be included in mathematical problem-solving knowledge for teaching. In particular, what do teachers need to know to teach for problem-solving proficiency? This question is addressed based on a review of the research literature on problem solving in mathematics education. The article discusses the perspective of problem-solving proficiency that framed the review and the findings regarding six categories of knowledge that teachers ought to hold to support students’ development of problem-solving proficiency. It concludes that mathematics problem-solving knowledge for teaching is a complex network of interdependent knowledge. Understanding this interdependence is important to help teachers to hold mathematical problem-solving knowledge for teaching so that it is usable in a meaningful and effective way in supporting problem-solving proficiency in their teaching. The perspective of mathematical problem-solving knowledge for teaching presented in this article can be built on to provide a framework of key knowledge mathematics teachers ought to hold to inform practice-based investigation of it and the design and investigation of learning experiences to help teachers to understand and develop the mathematics knowledge they need to teach for problem-solving proficiency.


2004 ◽  
Vol 96 (4) ◽  
pp. 635-647 ◽  
Author(s):  
Lynn S. Fuchs ◽  
Douglas Fuchs ◽  
Karin Prentice ◽  
Carol L. Hamlett ◽  
Robin Finelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document