The (Non) Deus-Ex Machina: A Realistic Assessment of Machine Learning for Countering Domestic Terrorism

Author(s):  
Christopher Wall
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245909
Author(s):  
Furqan Rustam ◽  
Madiha Khalid ◽  
Waqar Aslam ◽  
Vaibhav Rupapara ◽  
Arif Mehmood ◽  
...  

The spread of Covid-19 has resulted in worldwide health concerns. Social media is increasingly used to share news and opinions about it. A realistic assessment of the situation is necessary to utilize resources optimally and appropriately. In this research, we perform Covid-19 tweets sentiment analysis using a supervised machine learning approach. Identification of Covid-19 sentiments from tweets would allow informed decisions for better handling the current pandemic situation. The used dataset is extracted from Twitter using IDs as provided by the IEEE data port. Tweets are extracted by an in-house built crawler that uses the Tweepy library. The dataset is cleaned using the preprocessing techniques and sentiments are extracted using the TextBlob library. The contribution of this work is the performance evaluation of various machine learning classifiers using our proposed feature set. This set is formed by concatenating the bag-of-words and the term frequency-inverse document frequency. Tweets are classified as positive, neutral, or negative. Performance of classifiers is evaluated on the accuracy, precision, recall, and F1 score. For completeness, further investigation is made on the dataset using the Long Short-Term Memory (LSTM) architecture of the deep learning model. The results show that Extra Trees Classifiers outperform all other models by achieving a 0.93 accuracy score using our proposed concatenated features set. The LSTM achieves low accuracy as compared to machine learning classifiers. To demonstrate the effectiveness of our proposed feature set, the results are compared with the Vader sentiment analysis technique based on the GloVe feature extraction approach.


2020 ◽  
Author(s):  
David Peter Kovacs ◽  
William McCorkindale ◽  
Alpha Lee

<div><div><div><p>Organic synthesis remains a stumbling block in drug discovery. Although a plethora of machine learning models have been proposed as solutions in the literature, they suffer from being opaque black-boxes. It is neither clear if the models are making correct predictions because they inferred the salient chemistry, nor is it clear which training data they are relying on to reach a prediction. This opaqueness hinders both model developers and users. In this paper, we quantitatively interpret the Molecular Transformer, the state-of-the-art model for reaction prediction. We develop a framework to attribute predicted reaction outcomes both to specific parts of reactants, and to reactions in the training set. Furthermore, we demonstrate how to retrieve evidence for predicted reaction outcomes, and understand counterintuitive predictions by scrutinising the data. Additionally, we identify ”Clever Hans” predictions where the correct prediction is reached for the wrong reason due to dataset bias. We present a new debiased dataset that provides a more realistic assessment of model performance, which we propose as the new standard benchmark for comparing reaction prediction models.</p></div></div></div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dávid Péter Kovács ◽  
William McCorkindale ◽  
Alpha A. Lee

AbstractOrganic synthesis remains a major challenge in drug discovery. Although a plethora of machine learning models have been proposed as solutions in the literature, they suffer from being opaque black-boxes. It is neither clear if the models are making correct predictions because they inferred the salient chemistry, nor is it clear which training data they are relying on to reach a prediction. This opaqueness hinders both model developers and users. In this paper, we quantitatively interpret the Molecular Transformer, the state-of-the-art model for reaction prediction. We develop a framework to attribute predicted reaction outcomes both to specific parts of reactants, and to reactions in the training set. Furthermore, we demonstrate how to retrieve evidence for predicted reaction outcomes, and understand counterintuitive predictions by scrutinising the data. Additionally, we identify Clever Hans predictions where the correct prediction is reached for the wrong reason due to dataset bias. We present a new debiased dataset that provides a more realistic assessment of model performance, which we propose as the new standard benchmark for comparing reaction prediction models.


2020 ◽  
Author(s):  
David Peter Kovacs ◽  
William McCorkindale ◽  
Alpha Lee

<div><div><div><p>Organic synthesis remains a stumbling block in drug discovery. Although a plethora of machine learning models have been proposed as solutions in the literature, they suffer from being opaque black-boxes. It is neither clear if the models are making correct predictions because they inferred the salient chemistry, nor is it clear which training data they are relying on to reach a prediction. This opaqueness hinders both model developers and users. In this paper, we quantitatively interpret the Molecular Transformer, the state-of-the-art model for reaction prediction. We develop a framework to attribute predicted reaction outcomes both to specific parts of reactants, and to reactions in the training set. Furthermore, we demonstrate how to retrieve evidence for predicted reaction outcomes, and understand counterintuitive predictions by scrutinising the data. Additionally, we identify ”Clever Hans” predictions where the correct prediction is reached for the wrong reason due to dataset bias. We present a new debiased dataset that provides a more realistic assessment of model performance, which we propose as the new standard benchmark for comparing reaction prediction models.</p></div></div></div>


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document