A SIMPLE PROPAGATION MEDIUM FOR ACOUSTIC EMISSION TRANSDUCER CALIBRATION

1991 ◽  
Vol 6 (4) ◽  
pp. 235-238
Author(s):  
S. KERKYRAS ◽  
R. L. REUBEN ◽  
W.K.D. BORTHWICK
2019 ◽  
Vol 9 (23) ◽  
pp. 5124 ◽  
Author(s):  
Hamam ◽  
Godin ◽  
Fusco ◽  
Monnier

The present paper focuses on experiments and numerical simulation of the acoustic emission (AE) signals due to fiber break in a model composite. AE signals are related to wave effects due to the source, the propagation medium and the sensor. For quantitative AE analysis, it is very important to understand the effect of the piezoelectric sensors and propagation on the “primitive” AE signals. In this study, we investigate the influence of sensors, thickness, and position of the fiber by finite element simulations. This parametric study can allow an enlargement of the library for supervised classification of AE signals.


2001 ◽  
Vol 148 (4) ◽  
pp. 169-177 ◽  
Author(s):  
R.P. Dalton ◽  
P. Cawley ◽  
M.J. Lowe
Keyword(s):  

2020 ◽  
Vol 92 (2) ◽  
pp. 20401
Author(s):  
Evgeniy Dul'kin ◽  
Michael Roth

In relaxor (1-x)SrTiO3-xBiFeO3 ferroelectrics ceramics (x = 0.2, 0.3 and 0.4) both intermediate temperatures and Burns temperatures were successfully detected and their behavior were investigated in dependence on an external bias field using an acoustic emission. All these temperatures exhibit a non-trivial behavior, i.e. attain the minima at some threshold fields as a bias field enhances. It is established that the threshold fields decrease as x increases in (1-x)SrTiO3-xBiFeO3, as it previously observed in (1-x)SrTiO3-xBaTiO3 (E. Dul'kin, J. Zhai, M. Roth, Phys. Status Solidi B 252, 2079 (2015)). Based on the data of the threshold fields the mechanisms of arising of random electric fields are discussed and their strengths are compared in both these relaxor ferroelectrics.


Sign in / Sign up

Export Citation Format

Share Document