transducer calibration
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 272
Author(s):  
Jacek Marcinkiewicz ◽  
Mikołaj Spadło ◽  
Zaneta Staszak ◽  
Jarosław Selech

The article lays out the methodology for shaping the design features of a strain gauge transducer, which would make it possible to study forces and torques generated during the operation of symmetrical seeder coulters. The transducers that have been known up until now cannot be used to determine forces and torques for the coulter configuration adopted by the authors. For this purpose, the design of the transducer in the form of strain gauge beams was used to ensure the accumulated stress concentration. A detailed design was presented in the form of a 3D model, along with a transducer body manufactured on its basis, including the method for arranging the strain gauges thereon. Moreover, the article discusses the methodology of processing voltage signals obtained from component loads. Particular attention was paid to the methodology of determining the load capacity of the transducer structure, based on finite element method (FEM). This made it possible to choose a transducer geometry providing the expected measurement sensitivity and, at the same time, maintaining the best linearity of indications, insignificant coupling error, and a broad measurement range. The article also presents the characteristics of the transducer calibration process and a description of a special test stand designed for this purpose. The transducer developed within the scope of this work provides very high precision of load spectrum reads, thus enabling the performance of a detailed fatigue analysis of the tested designs. Additionally, the versatility it offers makes it easy to adapt to many existing test stands, which is a significant advantage because it eliminates the need to build new test stands.


2021 ◽  
Vol 70 ◽  
pp. 1-10
Author(s):  
Zhihua Liu ◽  
Chenguang Cai ◽  
Qi Lv ◽  
Ming Yang

2020 ◽  
Author(s):  
David R. Topham ◽  
John R. Marko

Abstract. Multi-frequency acoustic profiling is critically examined to estimate accuracies currently attainable in characterizing frazil suspensions: with primary interests focused on measuring fractional ice volume, a key factor in river ice growth models. The central issue is the adequacy of representations of backscatter cross sections of disk shaped frazil particles in a well-established theory of elastic spherical targets. An initial investigation established criteria for the existence of three-frequency solutions capable of providing lognormal statistical descriptions in terms of effective radii. These criteria restricted analyses of available field data with such models to inputs at two-frequencies limiting outputs to: a common effective radius, particle number density and frazil volume. Additional frazil cross section information is shown to be required to more fully exploit the full capability of multi-frequency profiling. An approximate relationship between cross sections and the product of acoustic wavenumbers and particle effective radii (k1ae) is developed from laboratory polystyrene disk and sphere data and transformed into the natural ice environment. Field data within the transformed range is transposed to higher frequencies in order to allow testing at still larger field values of k1ae. Two-frequency analyses utilizing the resulting “pseudo-frazil” relationship confirmed a close match with the field data and increased compatibility with existence criteria for three-frequency solutions. The results showed that, within transducer calibration limits, the originally tested spherical backscattering extractions consistently under-estimate frazil ice volume concentrations by 25 % confirming its continued use for accurate estimates in conjunction with a constant scaling factor of about 1.25.


2020 ◽  
Vol 48 ◽  
pp. 58-69
Author(s):  
Alexander Alexandrovitch Samokhin ◽  
◽  
Pavel Aleksandrovich Pivovarov ◽  
Andrei Leonidovich Galkin ◽  
◽  
...  

ACTA IMEKO ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 36
Author(s):  
Nattapon Saenkhum ◽  
Tassanai Sanponpute

<p class="Abstract" align="left">The National Institute of Metrology of Thailand’s (NIMT) strain-controlled elastic hinge-type torque standard machine was designed to cover a measuring range of 1 N·m to 1 kN·m. The elastic hinge was used both at the fulcrum and the hanger of the lever arms. The designed elastic hinge’s thickness, 0.50 mm, caused a higher stiffness than a sheet metal plate of other types of torque machines. The bending moment of all elastic hinges affected the sum of the torque signal on the lever arm that was used to observe the balancing of the lever. The residual torque sensitivity, which was no better than 0.20 mN·m, significantly affected the uncertainty of the low-range torque realisation.</p><p class="Abstract">The calibration and measurement capabilities of the machine were 0.010 % (<em>k</em> = 2) in the measurement range of 10 N·m to 1 kN·m and 0.030 % (<em>k</em> = 2) in the measurement range of 1 N·m to 10 N·m. In the transducer calibration, the influence of the random bending moment of the elastic hinge affected the repeatability, reproducibility, and linearity of the low torque measurements. The cause of the bending moment of the elastic hinges was a result of the deviation of the centre of gravity (CG) of the weight on the pan from the reference line. To improve CMCs, separate signal calibrations were selected for this experiment i.e. the left hinge, the right hinge, and the fulcrum. The torque in each signal calibration was combined by software and was used to correct the calibration value of the torque.</p>


Author(s):  
Nigel Johnston

An existing ISO standard frequency-domain method for measurement of speed of sound in a hydraulic pipeline is enhanced and extended in this article to include in situ measurement of pressure transducer calibration factors. Transducer mounting stresses are shown to cause variations in the calibration factors, and the proposed method can be used to eliminate these uncertainties, consequently improving the accuracy of the speed of sound. 95% confidence ranges in the speed of sound of less than ±0.1% have been achieved, and such high precision cannot be achieved by other practical methods. The method can also been extended to estimate viscosity and mean flow velocity, but accuracy is less good. Novel time-domain versions of the method are introduced. These may be valuable for real-time monitoring, and changes in speed of sound or calibration factor can be tracked with minimal delay. Some examples showing the effect of sudden aeration are presented; a sudden drop in speed of sound is apparent.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 48998-49003 ◽  
Author(s):  
Yelong Zheng ◽  
Meirong Zhao ◽  
Jile Jiang ◽  
Le Song

Sign in / Sign up

Export Citation Format

Share Document