Numerical Study of a Magneto-fluid Motion Through a Porous Medium Between Two Wavy Plates with Constant Suction

2001 ◽  
Vol 15 (2) ◽  
pp. 177-181 ◽  
Author(s):  
E. F. ELSHEHAWEY ◽  
E. M. E. ELBARBARY ◽  
N. S. ELGAZERY
2021 ◽  
Vol 8 (1) ◽  
pp. 25-32
Author(s):  
Sachidananda Sahoo ◽  
Kishore Kumar Prusty ◽  
Satyaranjan Mishra

The present study reveals the heat and mass transfer on the MHD flow of micropolar fluid in a porous medium within a rotating frame. In order to facilitate osillatory plate velocity with constant suction and first order chemical reaction has been considered. Using small perturbation approximation, the governing non-dimensional equations are solved. The influence of pertinent physical quantities on the flow phenomena have been presented graphically. The skin friction coefficient, wall couple stress, Nusselt and Sherwood number have also computed for different flow parameters and have presented in table. In the study, the applied magnetic field sets in to produce the resistive force i.e. the Lorentz force that resists the fluid motion throughout the domain. Attenuation in the Prandtl number is because of the slower thermal diffusivity resulted in a sharp reduction in the thermal boundary layer thickness. The retardation in the polar fluid concentration is greater in amount for the influence of heavier species.


2019 ◽  
Vol 8 (3) ◽  
pp. 5795-5802 ◽  

The main objective of this paper is to focus on a numerical study of viscous dissipation effect on the steady state flow of MHD Williamson nanofluid. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional PDEs (nonlinear) into coupled dimensionless ODEs. The numerical solution of these modeled ordinary differential equations (ODEs) is achieved by utilizing shooting technique together with Adams-Bashforth Moulton method of order four. Finally, the results of discussed for different parameters through graphs and tables.


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


Sign in / Sign up

Export Citation Format

Share Document