scholarly journals Sharpening and generalizations of Shafer's inequality for the arc sine function

2012 ◽  
Vol 23 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1179
Author(s):  
Katarzyna Tra̧bka-Wiȩcław

In this paper, some coefficient problems for starlike analytic functions with respect to symmetric points are considered. Bounds of several coefficient functionals for functions belonging to this class are provided. The main aim of this paper is to find estimates for the following: coefficients, logarithmic coefficients, some cases of the generalized Zalcman coefficient functional, and some cases of the Hankel determinant.


2021 ◽  
Vol 31 (01) ◽  
pp. 2150013
Author(s):  
Qiang Lai

This article presents a unified four-dimensional autonomous chaotic system with various coexisting attractors. The dynamic behaviors of the system are determined by its special nonlinearities with multiple zeros. Two cases of nonlinearities with sine function of the system are discussed. The symmetrical coexisting attractors, asymmetrical coexisting attractors and infinitely many coexisting attractors in the system are numerically demonstrated. This shows that such a system has an ability to produce abundant coexisting attractors, depending on the number of equilibrium points determined by nonlinearities.


Author(s):  
Vu Ngoc Viet Hoang ◽  
Dinh Gia Ninh

In this paper, a new plate structure has been found with the change of profile according to the sine function which we temporarily call as the sinusoidal plate. The classical plate theory and Galerkin’s technique have been utilized in estimating the nonlinear vibration behavior of the new non-rectangular plates reinforced by functionally graded (FG) graphene nanoplatelets (GNPs) resting on the Kerr foundation. The FG-GNP plates were assumed to have two horizontal variable edges according to the sine function. Four different configurations of the FG-GNP plates based on the number of cycles of sine function were analyzed. The material characteristics of the GNPs were evaluated in terms of two models called the Halpin–Tsai micromechanical model and the rule of mixtures. First, to verify this method, the natural frequencies of new non-rectangular plates made of metal were compared with those obtained by the Finite Element Method (FEM). Then, the numerical outcomes are validated by comparing with the previous papers for rectangular FGM/GNP plates — a special case of this structure. Furthermore, the impacts of the thermal environment, geometrical parameters, and the elastic foundation on the dynamical responses are scrutinized by the 2D/3D graphical results and coded in Wolfram-Mathematica. The results of this work proved that the introduced approach has the advantages of being fast, having high accuracy, and involving uncomplicated calculation.


2021 ◽  
Vol 25 (01) ◽  
pp. 29-36
Author(s):  
Muhammad Ghaffar Khan ◽  
Bakhtiar Ahmad ◽  
Gangadharan Murugusundaramoorthy ◽  
Wali Khan Mashwani ◽  
Sibel Yalçin ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Cui ◽  
Chaoyang Chen ◽  
Jie Jin ◽  
Fei Yu

A neural network is a model of the brain’s cognitive process, with a highly interconnected multiprocessor architecture. The neural network has incredible potential, in the view of these artificial neural networks inherently having good learning capabilities and the ability to learn different input features. Based on this, this paper proposes a new chaotic neuron model and a new chaotic neural network (CNN) model. It includes a linear matrix, a sine function, and a chaotic neural network composed of three chaotic neurons. One of the chaotic neurons is affected by the sine function. The network has rich chaotic dynamics and can produce multiscroll hidden chaotic attractors. This paper studied its dynamic behaviors, including bifurcation behavior, Lyapunov exponent, Poincaré surface of section, and basins of attraction. In the process of analyzing the bifurcation and the basins of attraction, it was found that the network demonstrated hidden bifurcation phenomena, and the relevant properties of the basins of attraction were obtained. Thereafter, a chaotic neural network was implemented by using FPGA, and the experiment proved that the theoretical analysis results and FPGA implementation were consistent with each other. Finally, an energy function was constructed to optimize the calculation based on the CNN in order to provide a new approach to solve the TSP problem.


Author(s):  
Abul Hasnat ◽  
Atanu Dey ◽  
Md. Azizul Hoque ◽  
Santanu Halder ◽  
Debotosh Bhattacharjee
Keyword(s):  

Author(s):  
Ming Zhang

This chapter develops a new nonlinear model, Ultra high frequency siGmoid and Trigonometric Higher Order Neural Networks (UGT-HONN), for data pattern recognition. UGT-HONN includes Ultra high frequency siGmoid and Sine function Higher Order Neural Networks (UGS-HONN) and Ultra high frequency siGmoid and Cosine functions Higher Order Neural Networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other Polynomial Higher Order Neural Network (PHONN) and Trigonometric Higher Order Neural Network (THONN) models, since UGS-HONN and UGC-HONN models to recognize data pattern with error approaching 0.0000%.


Sign in / Sign up

Export Citation Format

Share Document