Dynamical Behaviors of Sinusoidal Nanocomposite Plates Subjected to Thermomechanical Loads

Author(s):  
Vu Ngoc Viet Hoang ◽  
Dinh Gia Ninh

In this paper, a new plate structure has been found with the change of profile according to the sine function which we temporarily call as the sinusoidal plate. The classical plate theory and Galerkin’s technique have been utilized in estimating the nonlinear vibration behavior of the new non-rectangular plates reinforced by functionally graded (FG) graphene nanoplatelets (GNPs) resting on the Kerr foundation. The FG-GNP plates were assumed to have two horizontal variable edges according to the sine function. Four different configurations of the FG-GNP plates based on the number of cycles of sine function were analyzed. The material characteristics of the GNPs were evaluated in terms of two models called the Halpin–Tsai micromechanical model and the rule of mixtures. First, to verify this method, the natural frequencies of new non-rectangular plates made of metal were compared with those obtained by the Finite Element Method (FEM). Then, the numerical outcomes are validated by comparing with the previous papers for rectangular FGM/GNP plates — a special case of this structure. Furthermore, the impacts of the thermal environment, geometrical parameters, and the elastic foundation on the dynamical responses are scrutinized by the 2D/3D graphical results and coded in Wolfram-Mathematica. The results of this work proved that the introduced approach has the advantages of being fast, having high accuracy, and involving uncomplicated calculation.

2021 ◽  
Vol 891 ◽  
pp. 116-121
Author(s):  
Aleksander Muc

In this paper optimal design of free vibrations for functionally graded plates is studied using the analytical methods. The analytical methods can be employed for the solution of six of 21 arbitrary boundary conditions (the combinations of clamped, simply supported and free). The influence of various models of porosity and forms of different reinforcements with nanoplatelets and carbon nanotubes are investigated, including variations of stiffness/density along the thickness of a plate. The analysis is carried out for the classical plate theory. Parametric studies illustrate the possibility of increasing natural frequencies and the necessity of implementing the optimization techniques to find the best solutions from the engineering point of view.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4084 ◽  
Author(s):  
Zeng Cao ◽  
Xu Liang ◽  
Yu Deng ◽  
Xing Zha ◽  
Ronghua Zhu ◽  
...  

The primary objective of this article is to present a semi-analytical algorithm for the transient behaviors of Functionally Graded Materials plates (FGM plates) considering both the influence of in-plane displacements and the influence of temperature changes. Based on the classical plate theory considering the effect of in-plane displacements, the equilibrium equations of the motion system are derived by Hamilton’s principle. Here, we propose a novel, accurate, and efficient semi-analytical method that incorporates the Fourier series expansion, the Laplace transforms, and its numerical inversion and the Differential Quadrature Method (DQM) to simulate the transient behaviors. This paper validates the proposed method by comparisons with semi-analytical natural frequency results and those from the literature. Expressly, the results of dynamic response also agree well with those generated by the Navier’s method and Finite Element Method (FEM). A convergence study that utilizes the different numbers of sampling points shows that the process can converge quickly, and a few sampling points can achieve high accuracy. The effects of various boundary conditions at the ends, material graded index, and temperature change are further investigated. From the detailed parametric study, it is seen that the peak displacement increases as the edge degrees of freedom, the gradient index of the material, and temperature change increase.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750008 ◽  
Author(s):  
Mohammed Sobhy ◽  
Ahmed F. Radwan

This paper presents the analyses of free vibration and buckling of functionally graded (FG) nanoplates in thermal environment by using a new quasi-3D nonlocal hyperbolic plate theory in which both shear and normal strains are included. The nonlocal equations of motion for the present problem are derived from Hamilton’s principle. For simply-supported boundary conditions, Navier’s approach is utilized to solve the motion equations. Eringen’s nonlocal theory is employed to capture the effect of the nonlocal parameter on natural frequency and buckling of the FGM nanoplates. Numerical results of the present formulation are compared with those predicted by other theories available in the open literature to explain the accuracy of the suggested theory that contains the shear deformation and thickness stretching. Other numerical examples are also presented to show the influences of the nonlocal coefficient, power law index and geometrical parameters on the vibration and buckling load of FGM nanoplates.


2014 ◽  
Vol 704 ◽  
pp. 131-136
Author(s):  
El Kaak Rachid ◽  
Khalid El Bikri ◽  
Benamar Rhali

. This paper deals with nonlinear free axisymmetric vibrations of functionally graded thin circular plates (FGCP) whose properties vary through its thickness. The inhomogeneity of the plate is characterized by a power law variation of the Young’s modulus and mass density of the material along the thickness direction, whereas Poisson’s ratio is assumed to be constant. The theoretical model is based on Hamilton’s principle and spectral analysis using a basis of admissible Bessel’s functions to yield the frequencies of the circular plates under clamped boundary conditions on the basis of the classical plate theory. The large vibration amplitudes problem, reduced to a set of non-linear algebraic equations, is solved numerically. The non-linear to linear frequency ratios are presented. Then, explicit analytical solutions are presented, based on the semi-analytical model previously developed by EL Kadiri et al. [1-2] for beams and rectangular plates, which allow direct and easy calculation for the first non-linear axisymmetric mode shape, with their associated non-linear frequencies of FG circular plates and which are expected to be very useful in engineering applications and in further analytical developments. An excellent agreement is found with the results obtained by the iterative method.


2014 ◽  
Vol 971-973 ◽  
pp. 516-533 ◽  
Author(s):  
A. Abdenbi Boukhzer ◽  
Khalid El Bikri ◽  
Benamar Rhali

In the present study, the problem of geometrically nonlinear free vibrations of functionally graded rectangular plates (FGRP) is studied. A homogenization technique has been developed to reduce the FGRP problem under consideration to that of isotropic homogeneous rectangular plate. The material properties of the functionally graded composites examined herein are assumed to be graded in the thickness direction of the plate and estimated through the rule of mixture. The proposed theoretical model is based on the classical plate theory and the Von Karman relationships, and the amplitude equation is derived in the form of a set of non-linear algebraic equation using Hamilton’s principle and a multimode approach. The fundamental nonlinear frequency parameters and the bending stress are then calculated using the iterative and explicit methods of solution to show the effect of the vibration amplitudes and the material distributions. The results obtained in this study are found to be in a good agreement with the published ones dealing with the problem of large vibration of functionally graded plates.


Author(s):  
Khuc Van Phu ◽  
Le Xuan Doan ◽  
Nguyen Van Thanh

 In this paper, the governing equations of rectangular plates with variable thickness subjected to mechanical load are established by using the classical plate theory, the geometrical nonlinearity in von Karman-Donnell sense. Solutions of the problem are derived according to Galerkin method. Nonlinear dynamic responses, critical dynamic loads are obtained by using Runge-Kutta method and the Budiansky–Roth criterion. Effect of volume-fraction index k and some geometric factors are considered and presented in numerical results.


2016 ◽  
Vol 32 (5) ◽  
pp. 539-554 ◽  
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
A. Shahabodini

AbstractIn this paper, a non-classical plate model capturing the size effect is developed to study the forced vibration of functionally graded (FG) microplates subjected to a harmonic excitation transverse force. To this, the modified couple stress theory (MCST) is incorporated into the first-order shear deformation plate theory (FSDPT) to account for the size effect through one length scale parameter, only. Strong form of nonlinear governing equations and associated boundary conditions are obtained using Hamilton's principle. The solution process is implemented on two domains. The generalized differential quadrature (GDQ) method is first employed to discretize the governing equations on the space domain. A Galerkin-based scheme is then applied to extract a reduced set of the nonlinear equations of Duffing-type. On the second domain, through a time differentiation matrix operator, the set of ordinary differential equations are transformed into the discrete form on time domain. Eventually, a system of the parameterized nonlinear equations is acquired and solved via the pseudo-arc length continuation method. The frequency response curve of the microplate is sketched and the effects of various material and geometrical parameters on it are evaluated.


Author(s):  
Roshan Lal ◽  
Rahul Saini

In this article, the effect of Pasternak foundation on free axisymmetric vibration of functionally graded circular plates subjected to mechanical in-plane force and a nonlinear temperature distribution (NTD) along the thickness direction has been investigated on the basis of classical plate theory. The plate material is graded in thickness direction according to a power-law distribution and its mechanical properties are assumed to be temperature-dependent (TD). At first, the equation for thermo-elastic equilibrium and then equation of motion for such a plate model have been derived by Hamilton's principle. Employing generalized differential quadrature rule (GDQR), the numerical values of thermal displacements and frequencies for clamped and simply supported plates vibrating in the first three modes have been computed. Values of in-plane force parameter for which the plate ceases to vibrate have been reported as critical buckling loads. The effect of temperature difference, material graded index, in-plane force, and foundation parameters on the frequencies has been analyzed. The benchmark results for uniform and linear temperature distributions (LTDs) have been computed. A study for plates made with the material having temperature-independent (TI) mechanical properties has also been performed as a special case. Comparison of results with the published work has been presented.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


Sign in / Sign up

Export Citation Format

Share Document