function generator
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 62)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Aayush Patel

Abstract: The paper focuses on an application that can be developed on android, Android is a multipurpose operating system based on Linux for mobile devices such as smartphones and tablet computers, it contains several versions such as donot, ice-cream sandwich, KitKat, pie, etc. Function generator is a device used to generate a wide range of standardized electrical pulses such as sine wave, square wave and sawtooth wave whose frequency ranges from 0.1Hz to 11,000 Hz .In this paper we aim to review how this function generator can be developed using an android mobile application. The mobile phone application uses android in order to implement a function generator which generates different A.C sources available in the laboratory. This can be used extensively in remote areas where it is not easy to carry the function generator. Keyword: Function Generator, Android, CRO, Signals


2021 ◽  
Vol 2145 (1) ◽  
pp. 012058
Author(s):  
S Buathong ◽  
J Janpoon ◽  
N Suksawat ◽  
S Deachapunya

Abstract A simple short-pulse generator circuit based on electronic gates is designed for short electric pulse of about 12 ns at Full Width at Half Maximum (FWHM) and 3.6 Volt amplitude for driving a laser diode. Using our circuit with a 780 nm laser diode designed and fabricated for producing short light pulses. The circuit utilizes an AND gate, a XOR gate, and a common function generator, provides a repetition rate from DC up to 1 MHz. The laser pulses were generated and then detected via an avalanche photodiodes (APD). This finding can benefit the field of light-based quantum information including single photon experiments.


2021 ◽  
Author(s):  
Piotr Rzeszut ◽  
Jakub Chęciński ◽  
Ireneusz Brzozowski ◽  
Sławomir Ziętek ◽  
Witold Skowroński ◽  
...  

Abstract Magnetic tunnel junctions (MTJ) have been successfully applied in various sensing application and digital information storage technologies. Currently, a number of new potential applications of MTJs are being actively studied, including high-frequency electronics, energy harvesting or random number generators. Recently, MTJs have been also proposed in designs of new platforms for unconventional or bio-inspired computing. In the present work, it is shown that serially connected MTJs forming a multi-state memory cell can be used in a hardware implementation of a neural computing device. The main purpose of the multi-cell is the formation of quantized weights in the network, which can be programmed using the proposed electronic circuit. Multi-cells are connected to a CMOS-based summing amplifier and a sigmoid function generator, forming an artificial neuron. The operation of the designed network is tested using a recognition of hand-written digits in 20 × 20 pixels matrix and shows detection ratio comparable to the software algorithm, using weights stored in a multi-cell consisting of four MTJs or more.


Author(s):  
Moolchand Sharma ◽  
Satyanarayan Patel ◽  
A. Arockiarajan ◽  
Rahul Vaish

In this study, the creep and fatigue characterization is performed for 0.5Ba(Zr[Formula: see text]Ti[Formula: see text]O[Formula: see text]0.5(Ba[Formula: see text]Ca[Formula: see text]TiO3 (BZT-BCT) bulk ferroelectric ceramics. A function generator is used to generate the required waveform of the voltage amplifier for fatigue and creep analysis. The evolution of polarization is studied for electrical creep. The effects of temperature and electric field on the electric displacement are studied. Hysteresis–butterfly loops are analyzed for fatigue tests for different thermal loads up to 106 cycles. It inheres that the material is stable below 75[Formula: see text]C and can withstand high cycle fatigue loads (25 Hz, ± 1.5 kV/mm).


2021 ◽  
Vol 2 (4) ◽  
pp. 891-910
Author(s):  
Károly Jármai ◽  
Csaba Barcsák ◽  
Gábor Zoltán Marcsák

In engineering, metaheuristic algorithms have been used to solve complex optimization problems. This paper investigates and compares various algorithms. On one hand, the study seeks to ascertain the advantages and disadvantages of the newly presented heuristic techniques. The efficiency of the algorithms is highly dependent on the nature of the problem. The ability to change the complexity of the problem and the knowledge of global optimal locations are two advantages of using synthetic test functions for algorithm benchmarking. On the other hand, real-world design issues may frequently give more meaningful information into the effectiveness of optimization strategies. A new synthetic test function generator has been built to examine various optimization techniques. The objective function noisiness increased significantly with different transformations (Euclidean distance-based weighting, Gaussian weighting and Gabor-like weighting), while the positions of the optima remained the same. The test functions were created to assess and compare the performance of the algorithms in preparation for further development. The ideal proportions of the primary girder of an overhead crane have also been discovered. By evaluating the performance of fifteen metaheuristic algorithms, the optimum solution to thirteen mathematical optimization techniques, as well as the box-girder design, is identified. Some conclusions were drawn about the efficiency of the different optimization techniques at the test function and the transformed noisy functions. The overhead travelling crane girder design shows the real-life application.


2021 ◽  
Author(s):  
Matthew Clark ◽  
Gil Gonzalez ◽  
Chi Zhang

Abstract Coherent Raman scattering has been developed into powerful technologies for the chemical imaging of biological samples. However, limited sensitivity remains a critical bottleneck for coherent Raman microscopes. We introduce a pulse-picking technology that can significantly increase the sensitivity of coherent anti-Stokes Raman scattering (CARS) microscopy. An acousto-optic modulator driven by a function generator allows picking collinearly combined pump and Stokes pulses at low duty cycles. This method reduces the number of pulses at each image pixel, enhances the peak power of laser pulses, and thus significantly improves the sensitivity of CARS and minimizes phototoxicity. We demonstrated an over 1000-fold sensitivity improvement for CARS imaging. Besides, we show this pulse-picking method can enhance the sensitivity of multiphoton fluorescence and second harmonic generation modalities about 20 times. Using cell and biological tissue samples, we highlight the potential of this pulse-picking technology for highly sensitive multimodal chemical imaging in biological and medical sciences.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2167
Author(s):  
Eun S. Lee ◽  
Byeong Guk Choi

In order to design power converters and wireless power systems using high-frequency magnetic materials, the magnetic characteristics for the inductors and transformers should be specified in detail w.r.t. the operating frequency. For investigating the complex permeability of the magnetic materials by simply test prototypes, the inductor model-based calculation methodologies for the complex permeability are suggested to find the core loss characteristics in this paper. Based on the measured results of the test voltage Ve, current Ie, and phase difference θe, which can be obtained simply by an oscilloscope and a function generator, the real and imaginary permeability can be calculated w.r.t. operating frequency by the suggested calculation methodologies. Such information for the real and imaginary permeability is important to determine the size of the magnetic components and to analyze the core loss. To identify the superiority of the high-frequency magnetic materials, three prototypes for a ferrite core, amorphous core, and nanocrystalline core have been built and verified by experiment. As a result, the ferrite core is superior to the other cores for core loss, and the nanocrystalline core is recommended for compact transformer applications. The proposed calculation for the complex (i.e., real and imaginary) permeability, which has not been revealed in the datasheets, provides a way to easily determine the parameters useful for industrial electronics engineers.


Sign in / Sign up

Export Citation Format

Share Document