Measurement of particle deposition rates in a commercial aircraft cabin

2014 ◽  
Vol 20 (7) ◽  
pp. 770-779 ◽  
Author(s):  
Robert W. Powell ◽  
Byron W. Jones ◽  
Mohammad H. Hosni
2018 ◽  
Vol 66 (4) ◽  
pp. 362-374 ◽  
Author(s):  
Ying Hu ◽  
Chenxi Li ◽  
Feng Han ◽  
Zixin Feng ◽  
Liyan He

2020 ◽  
Vol 91 (9) ◽  
pp. 715-719
Author(s):  
Samir Nazarali ◽  
Henry Liu ◽  
Maleeha Syed ◽  
Terry Wood ◽  
Samuel Asanad ◽  
...  

BACKGROUND: Cabin pressurization is the process by which aircraft maintain a comfortable and safe environment for passengers flying at high altitudes. At high altitudes, most patients can tolerate changes in pressurization; however, passengers at high risk of hypoxia may experience ischemic events. The purpose of this study was to evaluate variations in pressurization of commercial aircraft at cruising altitude and describe its relevance in relation to patients with non-arteritic anterior ischemic optic neuropathy (NAION).METHODS: Altimeters were used to measure altitude and cabin altitude at cruising altitude aboard 113 commercial flights, including 53 narrow-body and 60 wide-body aircraft.RESULTS: Cabin altitude ranged from 4232 ft to 7956 ft at cruising altitudes ranging from 30,000 ft to 41,000 ft. The mean cabin altitude for all flights was 6309 876 ft. Narrow-body aircraft had a significantly higher mean cabin altitude (6739 829 ft) compared to wide-body aircraft (5929 733 ft). For all flights, the mean cruising altitude was 35,369 2881 ft with narrow-body aircraft cruising at a lower altitude of 34,238 2389 ft compared to wide-body aircraft at 36,369 2925 ft. Newer generation aircraft had a mean cabin altitude of 6066 837 ft, which was lower than the mean cabin altitude of older aircraft (6616 835 ft).DISCUSSION: Innovation in flight design has offered the ability for aircraft to fly at greater altitudes while maintaining lower cabin altitude. Those at high risk of hypoxia-induced complications may consider aircraft type when air travel is required.Nazarali S, Liu H, Syed M, Wood T, Asanad S, Sadun AA, Karanjia R. Aircraft cabin pressurization and concern for non-arteritic anterior ischemic optic neuropathy. Aerosp Med Hum Perform. 2020; 91(9):715719.


1993 ◽  
Vol 23 (8) ◽  
pp. 1603-1616 ◽  
Author(s):  
Gary M. Lovett ◽  
Steven E. Lindberg

Wet deposition of nitrogen compounds was measured and dry and cloud water deposition were estimated at 11 forested sites in North America and one site in Europe. Dry deposition was a significant pathway of N input to all the forests, averaging 46% of the total deposition. At most of these sites, NH4+ was the dominant form of fixed N in the air, but HNO3 vapor dominated the dry deposition of N. Coarse-particle deposition was often important, but fine-particle deposition usually contributed only a small amount of the dry-deposited N. The deposition rates of inorganic N, which ranged between 4.8 and 27 kg N•ha−1•year−1, were generally much higher than has been reported by other studies measuring only wet or bulk deposition. The highest deposition rates were at the high-elevation sites in the southeastern and northeastern United States and much of the deposition at these sites was attributed to cloud water. Throughfall and stemflow (TF + SF) flux was also measured at all sites, and the net canopy exchange (NCE = (TF + SF)–total deposition) was found to be negative (indicating consumption of N in the canopy) for NH4+ and NO3−, and positive (indicating canopy release) for organic N. Past reports of canopy release of NO3− can probably be attributed to washoff of dry-deposited NO3− species. Consumption of inorganic N in the canopy ranged from 1 to 12 kg N•ha−1•year−1, and was highest in the spruce and spruce–fir stands. When organic N was included in the canopy N balance, the net canopy uptake of N was generally < 15% of the total system N requirement. Total N deposition was a linear function of wet deposition for low-elevation sites, and dry deposition was a linear function of the net throughfall flux for NO3−.


Sign in / Sign up

Export Citation Format

Share Document