Atrazine and its metabolites (ATZs) in source water, finished water, and tap water from drinking water treatment plants and its human risk assessment in Zhoukou City, China

Author(s):  
Yu Jian ◽  
Xia Yunting ◽  
Tian Xianghong ◽  
Zhang Rong ◽  
Bian Zhanqiang
Author(s):  
Zhiquan Liu ◽  
Yongpeng Xu ◽  
Yuan Wang ◽  
Fuyi Cui

Abstract Quinolone (QN) antibiotics are widely used all over the world and have been frequently detected in source water, but the occurrence in tap water and the treatment efficiencies of QNs by drinking-water treatment plants (DWTPs) were rarely reported. In the present study, the occurrence and distribution of six representative QNs in three urban DWTPs of China were investigated. The results showed that the concentrations of total QNs in the three source waters ranged from 26.4 ng/L to 313.8 ng/L and all of the six QNs were detectable with a detection frequency of 100% (4.6 to 121.7 ng/L). Enrofloxacin (ENR) and ofloxacin (OFL) were the dominant species of QNs and accounted for 40.1% to 79.5% of the total QNs. After the treatments, there were still considerable QNs in the finished water (total amounts of 74.9 ng/L to 148.4 ng/L). The adsorbed QNs could be readily treated with the removal of turbidity by DWTPs, but only a part of the dissolved QNs (13.6% to 68.5%) can be removed. This implies that the dissolved QNs were more hazardous in the source water. Pre-oxidation and disinfection could remove 15.8 ± 8.3% and 16.9 ± 10.8% of dissolved QNs, respectively, depending on the chemical structure of QNs and the types of oxidant. Chemical oxidation was more efficient than coagulation-sedimentation and filtration for the treatment of dissolved QNs. Ozone-granular activated carbon filtration may fail to remove dissolved QNs in the actual DWTPs, because of the insufficient dosage of oxidant and the competition effect of natural organic matter.


2021 ◽  
pp. 117296
Author(s):  
Émile Sylvestre ◽  
Michèle Prévost ◽  
Jean-Baptiste Burnet ◽  
Patrick Smeets ◽  
Gertjan Medema ◽  
...  

2005 ◽  
Vol 71 (2) ◽  
pp. 1042-1050 ◽  
Author(s):  
Gerald Sedmak ◽  
David Bina ◽  
Jeffrey MacDonald ◽  
Lon Couillard

ABSTRACT Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.


2009 ◽  
Vol 75 (17) ◽  
pp. 5714-5718 ◽  
Author(s):  
Chuanwu Xi ◽  
Yongli Zhang ◽  
Carl F. Marrs ◽  
Wen Ye ◽  
Carl Simon ◽  
...  

ABSTRACT The occurrence and spread of antibiotic-resistant bacteria (ARB) are pressing public health problems worldwide, and aquatic ecosystems are a recognized reservoir for ARB. We used culture-dependent methods and quantitative molecular techniques to detect and quantify ARB and antibiotic resistance genes (ARGs) in source waters, drinking water treatment plants, and tap water from several cities in Michigan and Ohio. We found ARGs and heterotrophic ARB in all finished water and tap water tested, although the amounts were small. The quantities of most ARGs were greater in tap water than in finished water and source water. In general, the levels of bacteria were higher in source water than in tap water, and the levels of ARB were higher in tap water than in finished water, indicating that there was regrowth of bacteria in drinking water distribution systems. Elevated resistance to some antibiotics was observed during water treatment and in tap water. Water treatment might increase the antibiotic resistance of surviving bacteria, and water distribution systems may serve as an important reservoir for the spread of antibiotic resistance to opportunistic pathogens.


Sign in / Sign up

Export Citation Format

Share Document