surrogate data
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 77)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Rekha G ◽  
Shanthini B ◽  
Ranjith Kumar V

Heart diseases or Cardiovascular Diseases (CVDs) are the main cause of death on the planet throughout the most recent years and become the most dangerous disease in India and the entire world. The UCI repository is utilized to calculate the exactness of the AI calculations for foreseeing coronary illness, as k-nearest neighbor, decision tree, linear regression, and support vector machine. Different indications like chest pain, fasting of heartbeat, etc., are referenced. Large datasets, which are not available in medical and clinical research, are required in order to apply deep learning techniques. Surrogate data is generated from Cleveland dataset. The predicted results show that there is an improvement in classification accuracy. Heart disease is one of the most challenging diseases to diagnose as it is the most recognized killer in the present day. Utilizing AI algorithms, this paper gives anticipating coronary illness. Here, we will use the various machine learning algorithms such as Support Vector Machine, Random Forest, KNN, Naive Bayes, Decision Tree and LR.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
M. C. Mallika ◽  
S. Suriya Prabhaa ◽  
K. Asokan ◽  
K. S. Anil Kumar ◽  
T. R. Ramamohan ◽  
...  

Author(s):  
Beatrice Cairo ◽  
Raphael Martins de Abreu ◽  
Vlasta Bari ◽  
Francesca Gelpi ◽  
Beatrice De Maria ◽  
...  

We propose a procedure suitable for automated synchrogram analysis for setting the threshold below which phase variability between two marker event series is of such a negligible amount that the null hypothesis of phase desynchronization can be rejected. The procedure exploits the principle of maximizing the likelihood of detecting phase synchronization epochs and it is grounded on a surrogate data approach testing the null hypothesis of phase uncoupling. The approach was applied to assess cardiorespiratory phase interactions between heartbeat and inspiratory onset in amateur cyclists before and after 11-week inspiratory muscle training (IMT) at different intensities and compared to a more traditional approach to set phase variability threshold. The proposed procedure was able to detect the decrease in cardiorespiratory phase locking strength during vagal withdrawal induced by the modification of posture from supine to standing. IMT had very limited effects on cardiorespiratory phase synchronization strength and this result held regardless of the training intensity. In amateur athletes training, the inspiratory muscles did not limit the decrease in cardiorespiratory phase synchronization observed in the upright position as a likely consequence of the modest impact of this respiratory exercise, regardless of its intensity, on cardiac vagal control. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jolan Heyse ◽  
Laurent Sheybani ◽  
Serge Vulliémoz ◽  
Pieter van Mierlo

The detection of causal effects among simultaneous observations provides knowledge about the underlying network, and is a topic of interests in many scientific areas. Over the years different causality measures have been developed, each with their own advantages and disadvantages. However, an extensive evaluation study is missing. In this work we consider some of the best-known causality measures i.e., cross-correlation, (conditional) Granger causality index (CGCI), partial directed coherence (PDC), directed transfer function (DTF), and partial mutual information on mixed embedding (PMIME). To correct for noise-related spurious connections, each measure (except PMIME) is tested for statistical significance based on surrogate data. The performance of the causality metrics is evaluated on a set of simulation models with distinct characteristics, to assess how well they work in- as well as outside of their “comfort zone.” PDC and DTF perform best on systems with frequency-specific connections, while PMIME is the only one able to detect non-linear interactions. The varying performance depending on the system characteristics warrants the use of multiple measures and comparing their results to avoid errors. Furthermore, lags between coupled variables are inherent to real-world systems and could hold essential information on the network dynamics. They are however often not taken into account and we lack proper tools to estimate them. We propose three new methods for lag estimation in multivariate time series, based on autoregressive modelling and information theory. One of the autoregressive methods and the one based on information theory were able to reliably identify the correct lag value in different simulated systems. However, only the latter was able to maintain its performance in the case of non-linear interactions. As a clinical application, the same methods are also applied on an intracranial recording of an epileptic seizure. The combined knowledge from the causality measures and insights from the simulations, on how these measures perform under different circumstances and when to use which one, allow us to recreate a plausible network of the seizure propagation that supports previous observations of desynchronisation and synchronisation during seizure progression. The lag estimation results show absence of a relationship between connectivity strength and estimated lag values, which contradicts the line of thinking in connectivity shaped by the neuron doctrine.


Author(s):  
Jonathan F. Donges ◽  
Jakob H. Lochner ◽  
Niklas H. Kitzmann ◽  
Jobst Heitzig ◽  
Sune Lehmann ◽  
...  

AbstractSpreading dynamics and complex contagion processes on networks are important mechanisms underlying the emergence of critical transitions, tipping points and other non-linear phenomena in complex human and natural systems. Increasing amounts of temporal network data are now becoming available to study such spreading processes of behaviours, opinions, ideas, diseases and innovations to test hypotheses regarding their specific properties. To this end, we here present a methodology based on dose–response functions and hypothesis testing using surrogate data models that randomise most aspects of the empirical data while conserving certain structures relevant to contagion, group or homophily dynamics. We demonstrate this methodology for synthetic temporal network data of spreading processes generated by the adaptive voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen Networks Study. This data set provides a physically-close-contact network between several hundreds of university students participating in the study over the course of 3 months. We study the potential spreading dynamics of the health-related behaviour “regularly going to the fitness studio” on this network. Based on a hierarchy of surrogate data models, we find that our method neither provides significant evidence for an influence of a dose–response-type network spreading process in this data set, nor significant evidence for homophily. The empirical dynamics in exercise behaviour are likely better described by individual features such as the disposition towards the behaviour, and the persistence to maintain it, as well as external influences affecting the whole group, and the non-trivial network structure. The proposed methodology is generic and promising also for applications to other temporal network data sets and traits of interest.


Author(s):  
Sean Kelly ◽  
Andrea Lupini ◽  
Bogdan I. Epureanu

Abstract Sector-to-sector geometry or material property variations in as-manufactured bladed disks, or blisks, can result in significantly greater vibration responses during operation compared to nominally cyclic symmetric designs. The dynamics of blisks are sensitive to these unavoidable deviations, known as mistuning, making the identification of mistuning in as-manufactured blisks necessary for accurately predicting their vibration. Previous approaches to identify such mistuning parameters often require the identification of modal information or blade-isolation techniques such as blade detuning using masses or adding damping pads. However, modal information can be difficult to obtain accurately even in optimal bench conditions. Additionally, in practice it can be difficult to isolate individual blades by restricting blade motion or detuning individual blades through added masses due to geometric constraints. In this paper, we present a method for mistuning identification using a data-driven approach based on a neural network. Here, mistuning in all sectors of blisks with the same nominal geometry can be identified by using a small number of forced responses and the forcing phase information from traveling-wave excitation. In this approach, no system or sector-level modal response information, restrictive blade isolation, or mass detuning are required. Validation of this approach is presented using a finite element blisk model containing stiffness mistuning within the blades to create computationally generated surrogate data. It is shown that mistuning can be predicted accurately using forced responses containing a significant amount of absolute and relative measurement noise, mimicking responses collected from experimental measurements.


2021 ◽  
Author(s):  
Ann S. Choe ◽  
Bohao Tang ◽  
Kimberly Smith ◽  
Hamed Honari ◽  
Martin A. Lindquist ◽  
...  

Purpose: To evaluate the amplitude-weighted phase-locking value (awPLV) as a measure of synchronization of brain resting-state networks (RSNs) with the gastric basal electrical rhythm (BER). Methods: A recent study combined rsfMRI with concurrent cutaneous electrogastrography (EGG), in a highly-sampled individual who underwent 22 scanning sessions (two 15-minute runs per session) at 3.0 Tesla. After excluding three sessions due to weak EGG signals, 9.5 hours of data remained, from which 18 RSNs were estimated using spatial independent component analysis. Previously, using the phase-locking value (PLV), three of the 18 RSNs were determined to be synchronized with the BER. However, RSN power fluctuations in the gastric frequency band could reduce sensitivity of PLV. Accordingly, the current reanalysis used awPLV to unweight contributions from low power epochs. Mismatched EGG and rsfMRI data (from different days) served as surrogate data; for each RSN, empirical awPLV was compared with chance-level awPLV using a Wilcoxon rank test. P-values were adjusted using with a false discovery rate of 0.05. Additionally, simulations were performed to compare PLV and awPLV error rates under settings with a known ground truth. Results: Simulations show high false-negative rates when using PLV, but not awPLV. Reanalysis of the highly-sampled individual data using awPLV indicates that 11 of the 18 RSNs were synchronized with the BER. Conclusion: Simulations indicate that awPLV is a more sensitive measure of stomach/brain synchronization than PLV. Reanalysis results imply communication between the enteric nervous system and brain circuits not typically considered responsive to gastric state or function.


2021 ◽  
Author(s):  
Xinjia Hu ◽  
Jan Eichner ◽  
Eberhard Faust ◽  
Holger Kantz

AbstractReliable El Niño Southern Oscillation (ENSO) prediction at seasonal-to-interannual lead times would be critical for different stakeholders to conduct suitable management. In recent years, new methods combining climate network analysis with El Niño prediction claim that they can predict El Niño up to 1 year in advance by overcoming the spring barrier problem (SPB). Usually this kind of method develops an index representing the relationship between different nodes in El Niño related basins, and the index crossing a certain threshold is taken as the warning of an El Niño event in the next few months. How well the prediction performs should be measured in order to estimate any improvements. However, the amount of El Niño recordings in the available data is limited, therefore it is difficult to validate whether these methods are truly predictive or their success is merely a result of chance. We propose a benchmarking method by surrogate data for a quantitative forecast validation for small data sets. We apply this method to a naïve prediction of El Niño events based on the Oscillation Niño Index (ONI) time series, where we build a data-based prediction scheme using the index series itself as input. In order to assess the network-based El Niño prediction method, we reproduce two different climate network-based forecasts and apply our method to compare the prediction skill of all these. Our benchmark shows that using the ONI itself as input to the forecast does not work for moderate lead times, while at least one of the two climate network-based methods has predictive skill well above chance at lead times of about one year.


2021 ◽  
Vol 925 ◽  
Author(s):  
Subharthi Chowdhuri ◽  
Giovanni Iacobello ◽  
Tirtha Banerjee

Large-scale intermittency is a widely observed phenomenon in convective surface layer turbulence that induces non-Gaussian temperature statistics, while such a signature is not observed for velocity signals. Although approaches based on probability density functions have been used so far, those are not able to explain to what extent the signals’ temporal structure impacts the statistical characteristics of the velocity and temperature fluctuations. To tackle this issue, a visibility network analysis is carried out on a field-experimental dataset from a convective atmospheric surface layer flow. Through surrogate data and network-based measures, we demonstrate that the temperature intermittency is related to strong nonlinear dependencies in the temperature signals. Conversely, a competition between linear and nonlinear effects tends to inhibit the temperature-like intermittency behaviour in streamwise and vertical velocities. Based on present findings, new research avenues are likely to be opened up in studying large-scale intermittency in convective turbulence.


Sign in / Sign up

Export Citation Format

Share Document