Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women

2008 ◽  
Vol 12 (4) ◽  
pp. 207-218 ◽  
Author(s):  
Gavin L. Moir
2021 ◽  
pp. 149-157
Author(s):  
Manuel V. Garnacho-Castaño ◽  
Marcos Faundez-Zanuy ◽  
Noemí Serra-Payá ◽  
José L. Maté-Muñoz ◽  
Josep López-Xarbau ◽  
...  

This study aimed to assess the reliability and validity of the Polar V800 to measure vertical jump height. Twenty-two physically active healthy men (age: 22.89 ± 4.23 years; body mass: 70.74 ± 8.04 kg; height: 1.74 ± 0.76 m) were recruited for the study. The reliability was evaluated by comparing measurements acquired by the Polar V800 in two identical testing sessions one week apart. Validity was assessed by comparing measurements simultaneously obtained using a force platform (gold standard), high-speed camera and the Polar V800 during squat jump (SJ) and countermovement jump (CMJ) tests. In the test-retest reliability, high intraclass correlation coefficients (ICCs) were observed (mean: 0.90, SJ and CMJ) in the Polar V800. There was no significant systematic bias ± random errors (p > 0.05) between test-retest. Low coefficients of variation (<5%) were detected in both jumps in the Polar V800. In the validity assessment, similar jump height was detected among devices (p > 0.05). There was almost perfect agreement between the Polar V800 compared to a force platform for the SJ and CMJ tests (Mean ICCs = 0.95; no systematic bias ± random errors in SJ mean: -0.38 ± 2.10 cm, p > 0.05). Mean ICC between the Polar V800 versus high-speed camera was 0.91 for the SJ and CMJ tests, however, a significant systematic bias ± random error (0.97 ± 2.60 cm; p = 0.01) was detected in CMJ test. The Polar V800 offers valid, compared to force platform, and reliable information about vertical jump height performance in physically active healthy young men.


2014 ◽  
Vol 40 (1) ◽  
pp. 113-120 ◽  
Author(s):  
William E. Amonette ◽  
Denham Brown ◽  
Terry L. Dupler ◽  
Junhai Xu ◽  
James J. Tufano ◽  
...  

Abstract Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10-19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=-0.59; p<0.01), body mass (r=-0.52; p<0.01), lean mass (r=-0.61; p<0.01), vertical jump height (r=-0.67; p<0.01), peak power (r=-0.64; p<0.01), and peak force (r=-0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=-0.71; p<0.01), body mass (r=- 0.67; p<0.01), lean mass (r=-0.76; p<0.01), vertical jump height (r=-0.75; p<0.01), peak power (r=-0.78; p<0.01), and peak force (r=-0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential.


2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Arián Ramón Aladro Gonzalvo ◽  
Danilo Esparza Yánez ◽  
José Miguel Tricás Moreno ◽  
María Orosia Lucha López

2021 ◽  
pp. 1-8
Author(s):  
Junta Iguchi ◽  
Minoru Matsunami ◽  
Tatsuya Hojo ◽  
Yoshihiko Fujisawa ◽  
Kenji Kuzuhara ◽  
...  

BACKGROUND: Few studies have investigated the variations in body composition and performance in Japanese collegiate American-football players. OBJECTIVE: To clarify what characterizes competitors at the highest levels – in the top division or on the starting lineup – we compared players’ body compositions and performance test results. METHODS: This study included 172 players. Each player’s body composition and performance (one-repetition maximum bench press, one-repetition maximum back squat, and vertical jump height) were measured; power was estimated from vertical jump height and body weight. Players were compared according to status (starter vs. non-starter), position (skill vs. linemen), and division (1 vs. 2). Regression analysis was performed to determine characteristics for being a starter. RESULTS: Players in higher divisions and who were starters were stronger and had more power, greater body size, and better performance test results. Players in skill positions were relatively stronger than those in linemen positions. Vertical jump height was a significant predictor of being a starter in Division 1. CONCLUSION: Power and vertical jump may be a deciding factor for playing as a starter or in a higher division.


2020 ◽  
Vol 38 (13) ◽  
pp. 1475-1487 ◽  
Author(s):  
Rodrigo Ramirez-Campillo ◽  
Javier Sanchez-Sanchez ◽  
Blanca Romero-Moraleda ◽  
Javier Yanci ◽  
Antonio García-Hermoso ◽  
...  

2014 ◽  
Vol 20 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Gleber Pereira ◽  
Paulo B. de Freitas ◽  
Jose A. Barela ◽  
Carlos Ugrinowitsch ◽  
André L. F. Rodacki ◽  
...  

The aim of this study was to describe the intersegmental coordination and segmental contribution during intermittent vertical jumps performed until fatigue. Seven male visited the laboratory on two occasions: 1) the maximum vertical jump height was determined followed by vertical jumps habituation; 2) participants performed intermittent countermovement jumps until fatigue. Kinematic and kinetic variables were recorded. The overall reduction in vertical jump height was 5,5%, while the movement duration increased 10% during the test. The thigh segment angle at movement reversal significantly increased as the exercise progressed. Non-significant effect of fatigue on movement synergy was found for the intersegmental coordination pattern. More than 90% of the intersegmental coordination was explained by one coordination pattern. Thigh rotation contributed the most to the intersegmental coordination pattern, with the trunk second and the shank the least. Therefore, one intersegmental coordination pattern is followed throughout the vertical jumps until fatigue and thigh rotation contributes the most to jump height.


Sign in / Sign up

Export Citation Format

Share Document