intersegmental coordination
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 80 ◽  
pp. 102878
Author(s):  
Aline Prieto Silveira-Ciola ◽  
Lucas Simieli ◽  
Natália Madalena Rinaldi ◽  
Fabio Augusto Barbieri

Author(s):  
Gianluca U. Sorrento ◽  
Philippe S. Archambault ◽  
Joyce Fung

Abstract Background Walking with a haptic tensile force applied to the hand in a virtual environment (VE) can induce adaptation effects in both chronic stroke and non-stroke individuals. These effects are reflected in spatiotemporal outcomes such as gait speed. However, the concurrent kinematic changes occurring in bilateral lower limb coordination have yet to be explored. Methods Chronic stroke participants were stratified based on overground gait speed into lower functioning (LF < 0.8 m/s, N = 7) and higher functioning (HF ≥ 0.8 m/s, N = 7) subgroups. These subgroups and an age-matched control group (N = 14, CG) walked on a self-paced treadmill in a VE with either robot-generated haptic leash forces delivered to the hand and then released or with an instrumented cane. Walking in both leash (10 and 15 N) and cane conditions were compared to pre-force baseline values to evaluate changes in lower limb coordination outcomes. Results All groups showed some kinematic changes in thigh, leg and foot segments when gait speed increased during force and post-force leash as well as cane walking. These changes were also reflected in intersegmental coordination and 3D phase diagrams, which illustrated increased intersegmental trajectory areas (p < 0.05) and angular velocity. These increases could also be observed when the paretic leg transitions from stance to swing phases while walking with the haptic leash. The Sobolev norm values accounted for both angular position and angular velocity, providing a single value for potentially quantifying bilateral (i.e. non-paretic vs paretic) coordination during walking. These values tended to increase (p < 0.05) proportionally for both limbs during force and post-force epochs as gait speed tended to increase. Conclusions Individuals with chronic stroke who increased their gait speed when walking with tensile haptic forces and immediately after force removal, also displayed moderate concurrent changes in lower limb intersegmental coordination patterns in terms of angular displacement and velocity. Similar results were also seen with cane walking. Although symmetry was less affected, these findings appear favourable to the functional recovery of gait. Both the use of 3D phase diagrams and assigning Sobolev norm values are potentially effective for detecting and quantifying these coordination changes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246372
Author(s):  
Arthur H. Dewolf ◽  
Francesca Sylos-Labini ◽  
Germana Cappellini ◽  
Yury Ivanenko ◽  
Francesco Lacquaniti

Previous studies found significant modification in spatiotemporal parameters of backward walking in healthy older adults, but the age-related changes in the neuromuscular control have been considered to a lesser extent. The present study compared the intersegmental coordination, muscle activity and corresponding modifications of spinal montoneuronal output during both forward and backward walking in young and older adults. Ten older and ten young adults walked forward and backward on a treadmill at different speeds. Gait kinematics and EMG activity of 14 unilateral lower-limb muscles were recorded. As compared to young adults, the older ones used shorter steps, a more in-phase shank and foot motion, and the activity profiles of muscles innervated from the sacral segments were significantly wider in each walking condition. These findings highlight age-related changes in the neuromuscular control of both forward and backward walking. A striking feature of backward walking was the differential organization of the spinal output as compared to forward gait. In addition, the resulting spatiotemporal map patterns also characterized age-related changes of gait. Finally, modifications of the intersegmental coordination with aging were greater during backward walking. On the whole, the assessment of backward walk in addition to routine forward walk may help identifying or unmasking neuromuscular adjustments of gait to aging.


2020 ◽  
Author(s):  
Hiroshi Akuzawa ◽  
Tomoki Oshikawa ◽  
Koji Nakamura ◽  
Ren Kubota ◽  
Norifumi Takaki ◽  
...  

Abstract Background Medial tibial stress syndrome is a common sports related injury. Altered foot kinematics can be a risk factor for the injury. Since foot segments can move independently, intersegment coordination is important for proper foot function. This study aimed to compare the foot intersegmental coordination pattern and single segment kinematics between women lacrosse players with and without a history of medial tibial stress syndrome during drop jump. Methods Nine players with a medial tibial stress syndrome history and 12 players with no history were enrolled. Foot kinematics, including angle at landing and peak angle and excursion at the rearfoot, midfoot, and forefoot during single-leg drop jumps were analyzed. Each segment motion data from landing to leaping was time-scaled to 100% to analyze the intersegmental coordination with a modified vector coding technique. Instant intersegmental coordination of every 1% was classified into four patterns (in-phase, two segments rotate in the same direction with similar amplitudes; anti-phase, two segments rotate in opposite directions; proximal phase, proximal segment dominantly rotates in the same direction compared to the distal segment; and distal phase, distal segment dominantly rotates in the same direction compared to the proximal segment). The percentage of intersegmental coordination pattern and kinematics in each segment were compared between the groups using the Student’s t test. Results Groups with a history of medial stress syndrome showed a significantly higher percentage of proximal phase between the rearfoot and midfoot in the sagittal (Mean ± SD; history, 52.0 ± 18.5%, no history, 29.3 ± 16.7%; p = 0.005) and coronal planes (history, 43.0 ± 26.1%, no history, 15.9 ± 9.1%; p = 0.008). Dorsiflexion excursion (history, 34.8 ± 4.7°, no history, 29.6 ± 2.1°; p = 0.002) were significantly larger in a history of medial tibial stress syndrome group compared to no history group. Conclusions Rearfoot dominant motion pattern relative to the midfoot may be related to medial tibial stress syndrome. Intersegmental coordination analysis may be useful for detecting abnormal foot coordination patterns.


2019 ◽  
Author(s):  
Chang Liu ◽  
James M. Finley

AbstractRecovery from perturbations during walking is primarily mediated by reactive control strategies that coordinate multiple body segments to maintain balance. Balance control is often impaired in clinical populations who walk with spatiotemporally asymmetric gait, and, as a result, rehabilitation efforts often seek to reduce asymmetries in these populations. Previous work has demonstrated that the presence of spatiotemporal asymmetries during walking does not impair the control of whole-body dynamics during perturbation recovery. However, it remains to be seen how the neuromotor system adjusts intersegmental coordination patterns to maintain invariant whole-body dynamics. Here, we determined if the neuromotor system generates stereotypical coordination patterns irrespective of the level of asymmetry or if the neuromotor system allows for variance in intersegmental coordination patterns to stabilize whole-body dynamics. Nineteen healthy participants walked on a dual-belt treadmill at a range of step length asymmetries, and they responded to unpredictable, slip-like perturbations. We used principal component analysis of segmental angular momenta to characterize intersegmental coordination patterns before, during, and after imposed perturbations. We found that two principal components were sufficient to explain ~ 95% of the variance in segmental angular momentum during both steading walking and responses to perturbations. Our results also revealed that walking with asymmetric step lengths led to changes in intersegmental coordination patterns during the perturbation and during subsequent recovery steps without affecting whole-body angular momentum. These results suggest that the nervous system allows for variance in segment-level coordination patterns to maintain invariant control of whole-body angular momentum during walking. Future studies exploring how these segmental coordination patterns change in individuals with asymmetries that result from neuromotor impairments can provide further insight into how the healthy and impaired nervous system regulates dynamic balance during walking.


Author(s):  
Mathieu Gueugnon ◽  
Paul J. Stapley ◽  
Anais Gouteron ◽  
Cécile Lecland ◽  
Claire Morisset ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document