scholarly journals Physical Determinants of Interval Sprint Times in Youth Soccer Players

2014 ◽  
Vol 40 (1) ◽  
pp. 113-120 ◽  
Author(s):  
William E. Amonette ◽  
Denham Brown ◽  
Terry L. Dupler ◽  
Junhai Xu ◽  
James J. Tufano ◽  
...  

Abstract Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10-19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=-0.59; p<0.01), body mass (r=-0.52; p<0.01), lean mass (r=-0.61; p<0.01), vertical jump height (r=-0.67; p<0.01), peak power (r=-0.64; p<0.01), and peak force (r=-0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=-0.71; p<0.01), body mass (r=- 0.67; p<0.01), lean mass (r=-0.76; p<0.01), vertical jump height (r=-0.75; p<0.01), peak power (r=-0.78; p<0.01), and peak force (r=-0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential.

2011 ◽  
Vol 27 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Tyler J. Kirby ◽  
Jeffrey M. McBride ◽  
Tracie L. Haines ◽  
Andrea M. Dayne

The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r= .9337,p< .0001, power = 1.000) and countermovement jump (r= .925,p< .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r= –0.3947,p= .0018, power = 0.8831) and countermovement jump (r= –0.4080,p= .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.


2021 ◽  
pp. 149-157
Author(s):  
Manuel V. Garnacho-Castaño ◽  
Marcos Faundez-Zanuy ◽  
Noemí Serra-Payá ◽  
José L. Maté-Muñoz ◽  
Josep López-Xarbau ◽  
...  

This study aimed to assess the reliability and validity of the Polar V800 to measure vertical jump height. Twenty-two physically active healthy men (age: 22.89 ± 4.23 years; body mass: 70.74 ± 8.04 kg; height: 1.74 ± 0.76 m) were recruited for the study. The reliability was evaluated by comparing measurements acquired by the Polar V800 in two identical testing sessions one week apart. Validity was assessed by comparing measurements simultaneously obtained using a force platform (gold standard), high-speed camera and the Polar V800 during squat jump (SJ) and countermovement jump (CMJ) tests. In the test-retest reliability, high intraclass correlation coefficients (ICCs) were observed (mean: 0.90, SJ and CMJ) in the Polar V800. There was no significant systematic bias ± random errors (p > 0.05) between test-retest. Low coefficients of variation (<5%) were detected in both jumps in the Polar V800. In the validity assessment, similar jump height was detected among devices (p > 0.05). There was almost perfect agreement between the Polar V800 compared to a force platform for the SJ and CMJ tests (Mean ICCs = 0.95; no systematic bias ± random errors in SJ mean: -0.38 ± 2.10 cm, p > 0.05). Mean ICC between the Polar V800 versus high-speed camera was 0.91 for the SJ and CMJ tests, however, a significant systematic bias ± random error (0.97 ± 2.60 cm; p = 0.01) was detected in CMJ test. The Polar V800 offers valid, compared to force platform, and reliable information about vertical jump height performance in physically active healthy young men.


Author(s):  
Mahdi Cheraghi ◽  
Javad Sarvestan ◽  
Masoud Sebyani ◽  
Elham Shirzad

The importance of vertical jump in sport fields and rehabilitation is widely recognized. Furthermore, Force-Time variables of vertical jump are factors affecting jumping height. Exclusive review of each of this variables, in eccentric and concentric phases, can lead to a specific focus on them during jumping exercises. So, the aims of his study were to a) reviewing the relationship between force-time curve variables of eccentric and concentric phases with jump height and b) description of this variables in Iran national youth volleyball players society. This is an observational study. 12 elite volleyball player (Male, Iran national youth volleyball players, 17&plusmn;0.7 years) have participated in this study. Correlation between Force-Time variables - included peak force (PF), relative peak force (RPP), peak power (PP), average power (AP), relative peak power (RPP), and Modified Reactive Strength Index (MRSI) - in eccentric and concentric phases and ultimate jump height has been studied. Results showed that the average power (r=0.7) and relative peak force (r=0.75) of concentric phase and MRSI (r=0.83) have significant correlation with ultimate jump height (JH). Relative peak power and average power of concentric phase can massively effect Jump Height in sports like volleyball, which vertical jump is an integral part of them. Focus on both of these factors, which has been studied in this research, in training programs, can improve athlete jump performance significantly.


2010 ◽  
Vol 5 (4) ◽  
pp. 484-496 ◽  
Author(s):  
Jeffrey M. McBride ◽  
Tyler J. Kirby ◽  
Tracie L. Haines ◽  
Jared Skinner

Purpose:The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads.Methods:Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed.Results:Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P < .0001, power = 1.000) and CMJJS (r = .6007, P < .0001, power = 1.000). Across all squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = –0.1010, P = .2095, power = 0.2401) and CMJJS (r = –0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P < .0001, power = 1.000) and the CMJJS (r = .6631, P < .0001, power = 1.000). PP was statistically significantly higher at BM in comparison with 20% of 1RM and 40% of 1RM in the SJS and CMJJS across all squat depths.Conclusions:Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.


2016 ◽  
Vol 51 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Majdi Rouis ◽  
Laure Coudrat ◽  
Hamdi Jaafar ◽  
Elvis Attiogbé ◽  
Henry Vandewalle ◽  
...  

Abstract The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg) and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg) completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1) than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1). Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98) and maximal power performance (e.g. 0.75 < ICC < 0.97). However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.


2021 ◽  
Author(s):  
Morikawa Masanori ◽  
Maeda Noriaki ◽  
Komiya Makoto ◽  
Kobayashi Toshiki ◽  
Urabe Yukio

Abstract Background: Ankle orthotics decreases the maximal vertical jump height. It is essential to maximize jump height and minimize ground contact time during athletic performance. However, the effect of ankle orthotics on athletic performance has not been reported. We aimed to investigate the effect of ankle orthotics on squat jump (SJ), countermovement jump (CMJ), and repetitive rebound jump (RJ) performance and the relationship between jump performance and restriction in sagittal ankle range of motion. Methods: Twenty healthy volunteers performed SJ, CMJ, repetitive RJ under no-orthosis and two orthotic conditions (orthosis 1 and orthosis 2). During SJ and CMJ, we measured the vertical ground reaction force and calculated the following parameters: jump height, peak vertical ground reaction force, rate of force development, net vertical impulse, and peak power. During repetitive RJ, the jump height, contact time, and RJ index were measured. A two-dimensional motion analysis was used to quantify the ankle range of motion in the sagittal plane during SJ, CMJ, and repetitive RJ. Results: Multivariate analysis of variance and the post hoc test showed a significant decrease in the vertical jump height (p = 0.003), peak power (p = 0.007), and maximum plantarflexion and dorsiflexion angles (p <0.001) during SJ using orthosis 2 compared to those using the no-orthosis condition. Additionally, orthosis 2 significantly decreased the jump height at the end of repetitive RJ (p = 0.046), during which a significant negative correlation was found between jump height and maximum dorsiflexion angle (r = 0.485, p = 0.030). Conclusions: An ankle orthosis-induced restriction of dorsiflexion is associated with a reduction in jump height during static jump and repetitive RJ performance.


Author(s):  
Igor Ranisavljev ◽  
Milan Matić ◽  
Nenad Janković

The goal of the present study was to explore the relationship between maximum strength, the vertical jump, acceleration and change of direction performance in healthy young male students. The sample of variables included the following variables: body mass (BM), one repetition maximum on the half-squat test (Squat 1RM), one repetition maximum normalized for body mass (Squat 1RM_rel), peak power during the concentric phase of countermovement jump (Ppeak CMJ), vertical jump height during CMJ (CMJ_H), time for the 20m sprint (20m Srint) and time for the agility T-Test (Agility T-Test). The relationship was tested with the Pearson Coefficient of linear correlation (r). The results showed significant correlation between body mass with Squat 1RM_rel and peak concentric power during CMJ (r=-.424, and r=.377, respectively). Peak concentric power during CMJ additionally has a significant correlation with the change of direction abilities, 20m sprint, and vertical jump height, (r=-.401; r=-.467; r=.656; p<0.05, respectively). Also, significant correlation was determined between the 20m Sprint and Agility T-Test (r=.443; r=-.570, respectively), and Agility T-Test vertical jump height (r=-.498).  The level of relationships between maximum strength, acceleration, COD and CMJ may be attributable to differences in the control and coordination of several muscle groups during execution of these tests.


2021 ◽  
Vol 11 (17) ◽  
pp. 8103
Author(s):  
Kathleen A. Bieryla ◽  
Jeremy A. Cook ◽  
Ryan C. Snyder

The purpose of this study was to investigate the way in which anthropometric and fitness measures vary by class year before and after a Division I female field hockey competitive season. Anthropometric (mass and percent body fat) and fitness measures (vertical jump and Yo-Yo Intermittent Recovery Test 1 (Yo-Yo IR1) distance) were collected on 16 athletes (mean ± SD: age = 19.5 ± 0.9 years) before and after a competitive season. Class year, based on the athlete’s year in college, was used to group athletes in the study. Body mass, vertical jump height, and Yo-Yo IR1 distance all increased pre to post season (p < 0.05). First-year athletes had a significantly lower body mass, vertical jump height and Yo-Yo IR1 distance compared to other class years across the testing period (p < 0.05). Post season levels for first-years were lower than both pre and post season levels for sophomore or junior athletes. Team mean vertical jump increased 8.9%, with all but two athletes improving. Team mean Yo-Yo IR1 distance increased 16.4%. Athlete training over the course of the study was designed to improve on field playing performance and training was not directly select to improve measures in the study; therefore, the potential success of integrating fitness, speed, and strength development into technical training sessions is indicated. Coaches should be aware that first-year athletes may not be at the same level of conditioning as sophomores and juniors. Coaches should work specifically with the first-year athletes during the season to monitor their fitness levels.


Sign in / Sign up

Export Citation Format

Share Document