Thermal Buckling of Casing in a Slanted Thermal Production Well

2011 ◽  
Vol 29 (8) ◽  
pp. 796-803 ◽  
Author(s):  
Z. Zengxin ◽  
G. Deli
Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


2011 ◽  
Vol 2 (1) ◽  
pp. 13-17
Author(s):  
I. David ◽  
M. Visescu

Abstract Geothermal energy source is the heat from the Earth, which ranges from the shallow ground (the upper 100 m of the Earth) to the hot water and hot rock which is a few thousand meters beneath the Earth's surface. In both cases the so-called open systems for geothermal energy resource exploitation consist of a groundwater production well to supply heat energy and an injection well to return the cooled water, from the heat pump after the thermal energy transfer, in the underground. In the paper an analytical method for a rapid estimation of the ground water flow direction effect on the coupled production well and injection well system will be proposed. The method will be illustrated with solutions and images for representative flow directions respect to the axis of the production/injection well system.


Author(s):  
Gustavo Charles Peixoto de Oliveira ◽  
Lucas Cavalcanti Silva ◽  
Marcos Ramon Bezerra dos Santos ◽  
Waldir Leite Roque
Keyword(s):  

1995 ◽  
Vol 61 (590) ◽  
pp. 2168-2175
Author(s):  
Yoshiaki Yasui ◽  
Hiroyuki Moriyama ◽  
Yasuaki Nakamura ◽  
Mitsuyoshi Kamiya
Keyword(s):  

Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 120601
Author(s):  
Xiuping Zhong ◽  
Dongbin Pan ◽  
Ying Zhu ◽  
Yafei Wang ◽  
Lianghao Zhai ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


Sign in / Sign up

Export Citation Format

Share Document