Optimization of thermal buckling control for composite laminates with PFRC actuators using trigonometric shear deformation theory

2021 ◽  
Vol 35 (1) ◽  
pp. 257-266
Author(s):  
Yu Xue ◽  
Yao Zhang ◽  
Jinqiang Li
2004 ◽  
Vol 04 (03) ◽  
pp. 313-336 ◽  
Author(s):  
ABDULLATEEF M. AL-KHALEEFI

Based on the first-order shear deformation shell theory, an analytical approach is developed to predict the thermal buckling response of an all-edge clamped cylindrical panel. The analytical approach adopts a double Fourier solution method suitable for cylindrical panels. The present solutions are compared with the finite element solutions obtained using ANSYS. The effects of various dimensional parameters are included in the study.


2021 ◽  
pp. 79-79
Author(s):  
Zoran Vasic ◽  
Katarina Maksimovic ◽  
Mirko Maksimovic ◽  
Ivana Vasovic ◽  
Nenad Vidanovic ◽  
...  

The thermomechanical buckling and postbuckling behavior of layered composite shell type structure are considered with the finite element method (FEM) under the combination of temperature load and applied mechanical loads. To account for through-thickness shear deformation effects, the thermal elastic, Higher-Order Shear deformation Theory (HOST) is used in this study. The refined higher order theories, that takes into account the effect of transverse normal deformation, is used to develop discrete finite element models for the thermal buckling analysis of composite laminates. Attention in this study is focused on analyzing the temperature effects on buckling and postbuckling behavior of thin shell structural components. Special attention in this paper is focused on studying of values of the hole in curved panel on thermal buckling behavior and consequently to expend and upgrade previously conducted investigation. Using FEM, a broader observation of the critical temperature of loss of stability depending on the size of the hole was conducted. The presented numerical results based on HOST can be used as versatile and accurate method for buckling and postbuckling analyzes of thin-walled laminated plates under thermo-mechanical loads.


Author(s):  
Balram Yadav ◽  
Simant ◽  
Shivendra Kumar Yadav

In the present work thermal buckling of symmetric cross-ply composite laminates is investigated. In this study, a square plate element is employed for the thermal buckling analysis of composite laminated plates. The maximum buckling temperature of symmetric cross-ply laminates under various sides to thickness ratios, aspect ratios, stacking sequence and boundary condition are studied in detail. The maximum buckling temperature analysis of square composite eight and four layered plates under uniform temperature rise is investigated using the classical laminated plate theory & first order shear deformation theory and material properties (Stiffnesses, Poisson’s ratio and Coefficient of thermal expansion) are considered to be temperature dependent. The classical laminated plate theory and first order shear deformation theory in conjunction with the Rayleigh-Ritz method is used for the evaluation of the thermal buckling parameters of structures made out of graphite fibers with an epoxy matrix. The post-buckling response of symmetrically cross-ply laminated composite plates subjected to a combination of uniform temperature distribution through the thickness and in-plane compressive edge loading is presented. The maximum buckling temperature is obtained from the solution. The computing is done by using MATLAB.


Sign in / Sign up

Export Citation Format

Share Document