Impacts of uncertainties in base‐cation deposition on the assessment of critical loads for acid deposition

2000 ◽  
Vol 35 (10) ◽  
pp. 1915-1921 ◽  
Author(s):  
Junling An ◽  
Meiyuan Huang
2002 ◽  
Vol 6 (5) ◽  
pp. 833-848 ◽  
Author(s):  
S. A. Watmough ◽  
P. J. Dillon

Abstract. The impact of acid deposition and tree harvesting on three lakes and their representative sub-catchments in the Muskoka-Haliburton region of south-central Ontario was assessed using a critical loads approach. As nitrogen dynamics in forest soils are complex and poorly understood, for simplicity and to allow comparison among lakes and their catchments, CLs (A) for both lakes and forest soils were calculated assuming that nitrate leaching from catchments will not change over time (i.e. a best case scenario). In addition, because soils in the region are shallow, base cation weathering rates for the representative sub-catchments were calculated for the entire soil profile and these estimates were also used to calculate critical loads for the lakes. These results were compared with critical loads obtained by the Steady State Water Chemistry (SSWC) model. Using the SSWC model, critical loads for lakes were between 7 and 19 meq m-2yr-1 higher than those obtained from soil measurements. Lakes and forests are much more sensitive to acid deposition if forests are harvested, but two acid-sensitive lakes had much lower critical loads than their respective forested sub-catchments implying that acceptable acid deposition levels should be dictated by the most acid-sensitive lakes in the region. Under conditions that assume harvesting, the CL (A) is exceeded at two of the three lakes and five of the six sub-catchments assessed in this study. However, sulphate export from catchments greatly exceeds input in bulk deposition and, to prevent lakes from falling below the critical chemical limit, sulphate inputs to lakes must be reduced by between 37% and 92% if forests are harvested. Similarly, sulphate leaching from forested catchments that are harvested must be reduced by between 16 and 79% to prevent the ANC of water draining the rooting zone from falling below 0 μeq l-1. These calculations assume that extremely low calcium leaching losses (9–27 μeq l-1) from forest soils can be maintained without any decrease in forest productivity. Calcium concentrations in the three lakes have decreased by between ∼10 and 25% over the past 20 years and calculations assume that calcium concentrations in lakes can fall to around 30% of their current values without any harmful effects on biota. Both these assumptions require urgent investigation. Keywords: acid deposition, calcium, critical loads, forests, harvesting, lakes


2018 ◽  
Author(s):  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
Julian Aherne ◽  
Amanda S. Cole ◽  
Yayne-abeba Aklilu ◽  
...  

Abstract. Estimates of potential harmful effects to ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a one year simulation of a high resolution implementation of the Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data; total deposition in precipitation and total deposition to snowpack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulphur, nitrogen and base cation R2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulphur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-observation-based estimates of fugitive dust emissions, shown to be a factor of ten higher than reported values (Zhang et al., 2017), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snowpack observations were shown to be biased high, but in reasonable agreement for sulphur deposition when observations were corrected to account for throughfall in needleleaf forests. The model-observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface collected particles (Wang et al., 2015). Both original and observation-corrected model estimates of sulphur, nitrogen and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2004, 2016, 2017) protocols for critical loads, using variations on the Simple Mass Balance model for forest and terrestrial ecosystems, and the Steady State Water Chemistry and the First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage at 2013/14 emissions and deposition levels was predicted for regions within each of the ecosystem critical load datasets examined here. The spatial extent of the regions in exceedance of critical loads varied between 1 × 104 and 3.3 × 105 km2, for the more conservative observation-corrected estimates of deposition, with the variation dependant on the ecosystem and critical load protocol. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined. Base cation deposition was shown to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary particles dust particles as a function of their size.


2013 ◽  
Vol 116 (1-3) ◽  
pp. 119-130 ◽  
Author(s):  
Andrew L. Robison ◽  
Todd M. Scanlon ◽  
Bernard J. Cosby ◽  
James R. Webb ◽  
James N. Galloway

2000 ◽  
Vol 4 (1) ◽  
pp. 125-140 ◽  
Author(s):  
C. Curtis ◽  
T. Allott ◽  
J. Hall ◽  
R. Harriman ◽  
R. Helliwell ◽  
...  

Abstract. The critical loads approach is widely used within Europe to assess the impacts of acid deposition on terrestrial and freshwater ecosystems. Recent work in Great Britain has focused on the national application of the First-order Acidity Balance (FAB) model to a freshwaters dataset of 1470 lake and stream water chemistry samples from sites across Britain which were selected to represent the most sensitive water bodies in their corresponding 10 km grid square. A ``Critical Load Function" generated for each site is compared with the deposition load of S and N at the time of water chemistry sampling. The model predicts that when catchment processes reach steady-state with these deposition levels, increases in nitrate leaching will depress acid neutralizing capacity (ANC) below the critical threshold of 0 μeql-1 at more than a quarter of the sites sampled, i.e. the critical load of acid deposition is exceeded at these sites. The critical load exceedances are generally found in upland regions of high deposition where acidification has been previously recognised, but critical loads in large areas of western Scotland are also exceeded where little biological evidence of acidification has yet been found. There is a regional variation in the deposition reduction requirements for protection of the sampled sites. The FAB model indicates that in Scotland, most of the sampled sites could be protected by sufficiently large reductions in S deposition alone. In the English and Welsh uplands, both S and N deposition must be reduced to protect the sites. Current international commitments to reduce S deposition throughout Europe will therefore be insufficient to protect the most sensitive freshwaters in England and Wales. Keywords: critical loads; acidification; nitrate; FAB model; acid deposition


Sign in / Sign up

Export Citation Format

Share Document