scholarly journals Extending the use of dewatered alum sludge as a P-trapping material in effluent purification: Study on two separate water treatment sludges

2010 ◽  
Vol 45 (10) ◽  
pp. 1234-1239 ◽  
Author(s):  
Y. Q. Zhao ◽  
Y. Yang
2016 ◽  
Vol 4 (1) ◽  
pp. 746-752 ◽  
Author(s):  
Jun Li ◽  
Liu Liu ◽  
Jun Liu ◽  
Ting Ma ◽  
Ailan Yan ◽  
...  

2000 ◽  
Vol 41 (8) ◽  
pp. 17-22 ◽  
Author(s):  
J. Ruhsing Pan ◽  
C. Huang ◽  
C. Gang Fu

Sludge disposal has become a new challenge for the Taiwan government due to the increasing demand for better quality and greater quantity of water. In some water treatment plants, surfactant has been applied in the flotation process to improve its performance, which suggests the use of surfactant in sludge conditioning. In this study, effects of surfactants on the conditioning of the alum sludge collected from Feng-Yuan Water Treatment Plant were investigated. Surfactants of various charges, namely CTAB and SDS, were added to sludge samples in various amounts, and their effects on sludge dewaterability were evaluated. Surfactants were also added with either cationic or anionic polymers to better understand their effects on the mechanism of sludge conditioning and the feasibility as coagulant aid.Experimental results indicate that applying surfactants alone in sludge system decrease the filterability of sludge, but increase the sludge dewatering rate at optimum dosage. Cationic surfactant was proven possible as conditioning aid for the cationic polymer. The order of surfactant and polymer addition is the key to additive function. On the other hand, when the polymer of opposite charge was added with the surfactant, co-precipitation occurred which resulted in decreased filterability and dewaterability.


2012 ◽  
Vol 6 (5) ◽  
pp. 184-197
Author(s):  
Ooi Chong Hoe ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Noorhisham Tan Kofli ◽  
Mushrifah Idris

2006 ◽  
Vol 54 (5) ◽  
pp. 207-213 ◽  
Author(s):  
Y. Yang ◽  
D. Tomlinson ◽  
S. Kennedy ◽  
Y.Q . Zhao

Alum sludge refers to the by-product from the processing of drinking water in water treatment works. In this study, groups of batch experiments were designed to identify the characteristics of dewatered alum sludge for phosphorus adsorption. Air-dried alum sludge (moisture content 10.2%), which was collected from a water treatment works in Dublin, was subjected to artificial P-rich wastewater adsorption tests using KH2PO4 as a model P source. Adsorption behaviours were investigated as a function of amount and particle size of alum sludge, pH of solution and adsorption time. The results have shown that pH plays a major role not only in the adsorption process but also in the adsorption capacity. With regard to adsorption capacity, this study reveals the Langmuir adsorption isotherm being the best fit with experimental data (R2=0.98–0.99). The maximum adsorption capacities range from 0.7 to 3.5 mg-P/g when the pH of the synthetic P solution was varied from 9.0 to 4.3, accordingly. The outcome of this study indicated that alum sludge is suitable for use as an adsorbent for removal of phosphate from wastewater.


1994 ◽  
Vol 29 (4) ◽  
pp. 571-580
Author(s):  
Jose M. Azcue ◽  
Olaf Malam ◽  
Wolfgang G. Pfeiffer

Abstract The effect of the extended use of alum on the concentration of aluminum in water treatment was investigated. Water from the Paraiba do Sul-Guandu River (PSR-GR) system, collected after conventional treatment, was analyzed from the six water treatment plants (WTPs). One of the WTPs, the Guandu WTP, supplies water to the city of Rio de Janeiro (11 million inhabitants) with a flow of 40 m3/s. The concentrations of aluminum found were near and sometimes over the values recommended by the World Health Organization (200 µg/L), with an average concentration of 306 µg/L, reaching seasonally maximum values of 877 µg/L at the WTP and 2,100 µg/L in household taps. The discharge of alum sludge back to the river system is the predominant pathway in the aluminum cycling in the study area, followed by sedimentation and enhanced availability to the biota.


2011 ◽  
Vol 63 (10) ◽  
pp. 2367-2373 ◽  
Author(s):  
Y. Yang ◽  
Y. Q. Zhao ◽  
S. P. Wang ◽  
X. C. Guo ◽  
Y. X. Ren ◽  
...  

This study examined a novel reuse of alum sludge, an inescapable by-product of drinking water treatment process when aluminium salt is added as a coagulant, as the main medium in a laboratory-scale multi-stage constructed wetland (CW) system for reject water treatment. Such reject water is a main concern in municipal wastewater treatment plant (MWWTP) for increasing the organic and nutrient loading. A ‘tidal flow’ strategy was employed to enhance the wetland aeration to stimulate organic matters (OM) and ammoniacal-nitrogen (N) oxidation while the ‘step feed’ operation was adopted to supply the necessary amount of carbon source for denitrification. The results reveal that alum sludge acting as P adsorbent can secure the P removal. Meanwhile, high removals of N and OM can also be obtained due to the active bacteria growth on the alum sludge surface. The results show that average removal efficiencies of 65.4 ± 12.3% for chemical oxygen demand (COD), 67.8 ± 9.2% for five-day biochemical oxygen demand (BOD5), 33.6 ± 17.0% for N and 99.5 ± 0.49% for P can be achieved over a period of 190 days. This indicates that novel reuse of alum sludge as medium in CW system can provide a promising approach for reject water treatment. Therefore, it will significantly reduce the amount of pollutant feedback through reject water recycling in a MWWTP.


Sign in / Sign up

Export Citation Format

Share Document