Chemical-physical properties of spinel CoMn2O4nano-powders and catalytic activity in the 2-propanol and toluene combustion: Effect of the preparation method

2011 ◽  
Vol 46 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Seyed Ali Hosseini ◽  
Dariush Salari ◽  
Aligholi Niaei ◽  
Francesca Deganello ◽  
Giuseppe Pantaleo ◽  
...  
1930 ◽  
Vol 34 (4) ◽  
pp. 748-752 ◽  
Author(s):  
G. B. Taylor ◽  
G. B. Kistiakowsky ◽  
J. H. Perry

Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 486 ◽  
Author(s):  
Mayakrishnan Gopiraman ◽  
Somasundaram Saravanamoorthy ◽  
Dian Deng ◽  
Andivelu Ilangovan ◽  
Ick Soo Kim ◽  
...  

In this study, a very simple and highly effective mechanochemical preparation method was developed for the preparation of Ni nanoparticles supported graphene oxide (GO) nanocomposites (Ni/GO, where Ni is a composition of Ni(OH)2, NiOOH, NiO, Ni2O3 and NiO2), 3 wt% NiO/GO (Ni/GO-1) and 8 wt% NiO/GO(Ni/GO-2). The developed method is not only very simple and efficient, but also, the morphology of Ni/GO nanocomposites can be tuned by simply varying the metal loading. Morphology and specific surface area of the resultant Ni/GO nanocomposites were investigated by mean of AFM, HR-TEM and BET. Chemical sate and factual content of Ni in Ni/GO-1 and Ni/GO-2, and the presence of defective sites in Ni-nanocomposites were investigated in detail. To our delight, the prepared Ni/GO-2 demonstrated superior catalytic activity toward the reduction of 2- and 4-nitrophenol in water with high rate constant (kapp) of 35.4 × 10−3 s−1. To the best of our knowledge, this is the best efficient Ni-based graphene nanocomposites for the reduction of 2- and 4-NP reported to date. The Ni/GO-1 and Ni/GO-2 demonstrated an excellent reusability; no loss in its catalytic activity was noticed, even after 10th cycle. Surprisingly the Ni/GO-2 as electrode material exhibited an excellent specific capacitance of 461 F/g in 6 M KOH at a scan rate of 5 mV. Moreover, the Ni/GO nanocomposites were found to possess poor electrical resistance and high stability (no significant change in the specific capacitance even after 1000 cycles).


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 795 ◽  
Author(s):  
Hua-Ping Ren ◽  
Shao-Peng Tian ◽  
Si-Yi Ding ◽  
Gui-Qiu Huang ◽  
Min Zhu ◽  
...  

Ni-C/SiO2 and Ni-G/SiO2 catalysts were prepared by a complexed-impregnation method using citric acid and glycine as complexing agents, respectively. Ni/SiO2 was also prepared by the conventional incipient impregnation method. All the catalysts were comparatively tested for carbon dioxide reforming of methane (CDR) at P = 1.0 atm, T = 750 °C, CO2/CH4 = 1.0, and GHSV = 60,000 mL·g−1·h−1. The results showed that Ni-C/SiO2 and Ni-G/SiO2 exhibited better CDR performance, especially regarding stability, than Ni/SiO2. The conversions of CH4 and CO2 were kept constant above 82% and 87% after 20 h of reaction over Ni-C/SiO2 and Ni-G/SiO2 while they were decreased from 81% and 88% to 56% and 59%, respectively, over the Ni/SiO2. The characterization results of the catalysts before and after the reaction showed that the particle size and the distribution of Ni, as well as the interactions between Ni and the support were significantly influenced by the preparation method. As a result, an excellent resistance to the coking deposition and the anti-sintering of Ni was obtained over the Ni-C/SiO2 and Ni-G/SiO2, leading to a highly active and stable CDR performance.


2021 ◽  
Vol 149 ◽  
pp. 106247
Author(s):  
Kanokwan Ngaosuwan ◽  
Waranya Chaiyariyakul ◽  
Onjira Inthong ◽  
Worapon Kiatkittipong ◽  
Doonyapong Wongsawaeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document