A two-phase hybrid approach using feature selection and Adaptive SVM for chronic disease classification

Author(s):  
Divya Jain ◽  
Vijendra Singh
Author(s):  
Divya Jain ◽  
Vijendra Singh

A two-phase diagnostic framework based on hybrid classification for the diagnosis of chronic disease is proposed. In the first phase, feature selection via ReliefF method and feature extraction via PCA method are incorporated. In the second phase, efficient optimization of SVM parameters via grid search method is performed. The proposed hybrid classification approach is then tested with seven popular chronic disease datasets using a cross-validation method. Experiments are then conducted to evaluate the presented classification method vis-à-vis four other existing classifiers that are applied on the same chronic disease datasets. Results show that the presented approach reduces approximately 40% of the extraneous and surplus features with substantial reduction in the execution time for mining all datasets, achieving the highest classification accuracy of 98.5%. It is concluded that with the presented approach, excellent classification accuracy is achieved for each chronic disease dataset while irrelevant and redundant features may be eliminated, thereby substantially reducing the diagnostic complexity and resulting computational time.


Author(s):  
E. MONTAÑÉS ◽  
J. R. QUEVEDO ◽  
E. F. COMBARRO ◽  
I. DÍAZ ◽  
J. RANILLA

Feature Selection is an important task within Text Categorization, where irrelevant or noisy features are usually present, causing a lost in the performance of the classifiers. Feature Selection in Text Categorization has usually been performed using a filtering approach based on selecting the features with highest score according to certain measures. Measures of this kind come from the Information Retrieval, Information Theory and Machine Learning fields. However, wrapper approaches are known to perform better in Feature Selection than filtering approaches, although they are time-consuming and sometimes infeasible, especially in text domains. However a wrapper that explores a reduced number of feature subsets and that uses a fast method as evaluation function could overcome these difficulties. The wrapper presented in this paper satisfies these properties. Since exploring a reduced number of subsets could result in less promising subsets, a hybrid approach, that combines the wrapper method and some scoring measures, allows to explore more promising feature subsets. A comparison among some scoring measures, the wrapper method and the hybrid approach is performed. The results reveal that the hybrid approach outperforms both the wrapper approach and the scoring measures, particularly for corpora whose features are less scattered over the categories.


Medical Care ◽  
1969 ◽  
Vol 7 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Sidney Katz ◽  
Amasa B. Ford ◽  
Thomas D. Downs ◽  
Mary Adams

2021 ◽  
pp. 69-80
Author(s):  
Winston Zhang ◽  
Najla Al Turkestani ◽  
Jonas Bianchi ◽  
Celia Le ◽  
Romain Deleat-Besson ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sandeepkumar Hegde ◽  
Monica R. Mundada

Purpose According to the World Health Organization, by 2025, the contribution of chronic disease is expected to rise by 73% compared to all deaths and it is considered as global burden of disease with a rate of 60%. These diseases persist for a longer duration of time, which are almost incurable and can only be controlled. Cardiovascular disease, chronic kidney disease (CKD) and diabetes mellitus are considered as three major chronic diseases that will increase the risk among the adults, as they get older. CKD is considered a major disease among all these chronic diseases, which will increase the risk among the adults as they get older. Overall 10% of the population of the world is affected by CKD and it is likely to double in the year 2030. The paper aims to propose novel feature selection approach in combination with the machine-learning algorithm which can early predict the chronic disease with utmost accuracy. Hence, a novel feature selection adaptive probabilistic divergence-based feature selection (APDFS) algorithm is proposed in combination with the hyper-parameterized logistic regression model (HLRM) for the early prediction of chronic disease. Design/methodology/approach A novel feature selection APDFS algorithm is proposed which explicitly handles the feature associated with the class label by relevance and redundancy analysis. The algorithm applies the statistical divergence-based information theory to identify the relationship between the distant features of the chronic disease data set. The data set required to experiment is obtained from several medical labs and hospitals in India. The HLRM is used as a machine-learning classifier. The predictive ability of the framework is compared with the various algorithm and also with the various chronic disease data set. The experimental result illustrates that the proposed framework is efficient and achieved competitive results compared to the existing work in most of the cases. Findings The performance of the proposed framework is validated by using the metric such as recall, precision, F1 measure and ROC. The predictive performance of the proposed framework is analyzed by passing the data set belongs to various chronic disease such as CKD, diabetes and heart disease. The diagnostic ability of the proposed approach is demonstrated by comparing its result with existing algorithms. The experimental figures illustrated that the proposed framework performed exceptionally well in prior prediction of CKD disease with an accuracy of 91.6. Originality/value The capability of the machine learning algorithms depends on feature selection (FS) algorithms in identifying the relevant traits from the data set, which impact the predictive result. It is considered as a process of choosing the relevant features from the data set by removing redundant and irrelevant features. Although there are many approaches that have been already proposed toward this objective, they are computationally complex because of the strategy of following a one-step scheme in selecting the features. In this paper, a novel feature selection APDFS algorithm is proposed which explicitly handles the feature associated with the class label by relevance and redundancy analysis. The proposed algorithm handles the process of feature selection in two separate indices. Hence, the computational complexity of the algorithm is reduced to O(nk+1). The algorithm applies the statistical divergence-based information theory to identify the relationship between the distant features of the chronic disease data set. The data set required to experiment is obtained from several medical labs and hospitals of karkala taluk ,India. The HLRM is used as a machine learning classifier. The predictive ability of the framework is compared with the various algorithm and also with the various chronic disease data set. The experimental result illustrates that the proposed framework is efficient and achieved competitive results are compared to the existing work in most of the cases.


Sign in / Sign up

Export Citation Format

Share Document