Multi-level Response Modification Factor Estimation for Steel Moment-Resisting Frames Using Endurance-Time Method

Author(s):  
Vahid Mohsenian ◽  
Iman Hajirasouliha ◽  
Ali Nikkhoo
10.29007/q8wl ◽  
2018 ◽  
Author(s):  
Nirav K. Patel ◽  
Prutha Vyas

Conventional seismic analysis of structure incorporates only elastic response of the structure. To understand nonlinear response of the structure, Performance Based Design (PBD) approach is widely used. PBD includes Pushover analysis i.e. nonlinear static analysis, which shows the post-elastic behaviour of the structure. IS 1893-2002 incorporates the nonlinear response of a structure considering response reduction factor (R) so that a linear elastic force based approach can be used for design. The response modification factor plays a key role in the seismic design of new buildings. However, the Indian code does not provide information on the components of R factor. The values assigned to this factor is based on engineering judgment. The study includes the calculation of value R based on different components as per ATC-19 and compares values of R for Special Moment resisting frame (SMRF) and Ordinary Moment resisting frames (OMRF) for two different seismic zones. An improvement in the reliability of modern earthquake-resistant buildings will require the systematic evaluation of the building response characteristics, which mostly affects the values assigned to the factor.


2015 ◽  
Vol 15 (06) ◽  
pp. 1450080
Author(s):  
Hamid Rahmani Samani ◽  
Masoud Mirtaheri ◽  
Mojtaba Rafiee

A common and successful way of structural control is to dissipate the seismic kinetic energy via frictional dampers. Response of a friction damped frame during an earthquake excitation is heavily dependent to the slippage limit of the frictional dampers. Low values of slippage load may lead to excessive deformations while large slippage loads may prevent sliding. Therefore, selecting appropriate values for slippages loads of the dampers is very important in order to have optimum energy dissipating system. Utilizing a response modification factor, the standard seismic design code procedure can be applied to the frames equipped with frictional dampers to determine the value of slippage loads. In this investigation, the response modification factor of steel moment resisting frames equipped with frictional dampers is evaluated considering the effects of various slippage loads. The response modification factor is calculated for two bay widths of 5 m and 7 m in length. It is shown that the optimum slippage load that results in the maximum response modification factor is in the range of 8% to 20% of the total weight of the structure. The taller the structure is, the less the optimum slippage load will be. Finally, an equation is proposed for the response modification factor as a function of the slippage load.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1646-1664
Author(s):  
Elena Elettore ◽  
Annarosa Lettieri ◽  
Fabio Freddi ◽  
Massimo Latour ◽  
Gianvittorio Rizzano

Sign in / Sign up

Export Citation Format

Share Document