Assessment of the effect of cooling rate on dendrite coherency point and hot tearing susceptibility of AZ magnesium alloys using thermal analysis

2018 ◽  
Vol 32 (2) ◽  
pp. 85-94 ◽  
Author(s):  
F. Yavari ◽  
S.G. Shabestari
2011 ◽  
Vol 189-193 ◽  
pp. 3886-3890
Author(s):  
Zhong Wei Chen ◽  
Pei Chen ◽  
Li Fan

The Dendrite Coherency Point (DCP) of A357 alloy was determined after different melt treatments by double thermocouples, and the coherency solid fraction (fscoh) was calculated by thermal analysis. The results of dendrite coherency properties show that fscoh values increase with increased cooling rate for A357 alloy. For A357 alloys, fscoh values increase after grain refined and melt superheat treatment. The coherency point was found to be dependent on not only the morphology of the dendrites but also the dendrite growth rate.


2015 ◽  
Vol 60 (4) ◽  
pp. 2993-3000 ◽  
Author(s):  
M. Król ◽  
T. Tański ◽  
G. Matula ◽  
P. Snopiński ◽  
A.E. Tomiczek

The paper presents the results of the crystallisation process of cast magnesium alloys based on the thermal-derivation analysis. The effects of aluminium content and cooling rate on the characteristic parameters of the evaluation of magnesium dendrites during solidification at different cooling rates were investigated by thermal-derivative analysis (TDA). Dendrite coherency point (DCP) is defined with a new approach based on the second derivative cooling curve. Solidification behaviour was evaluated via one thermocouple thermal analysis method. Microstructural evaluations were characterised by light microscope, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. This research revealed that utilisation of d2T/dt2 versus the time curve methodology allows for analysis of the dendrite coherency point.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2006 ◽  
Vol 15-17 ◽  
pp. 59-64 ◽  
Author(s):  
Rafal Maniara ◽  
Leszek Adam Dobrzański ◽  
Jerry Sokolowski ◽  
Wojciech Kasprzak ◽  
Witold T. Kierkus

In this work effect of cooling rate on the size of the grains, SDAS, β phases and thermal characteristic results of Al-Si cast alloys have been described. The solidification process was studied using the cooling and crystallization curve at cooling rate ranging from 0,1 °Cs-1 up to 1 °Cs-1. The main observation made from this work was that when cooling rate is increased the aluminum dendrites nucleation temperature and solid fraction at the dendrite coherency point increases, which implies that mass feeding is extended. In addition to that, it was observed that solidus temperature and size of the β phases decreases when cooling rate increases. Investigations were showed, that the thermal modification could be quantitatively assessed by analysis of the crystallization curve.


Sign in / Sign up

Export Citation Format

Share Document