solidus temperature
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
zhongyang Ma ◽  
Hongmei Sun ◽  
Huan Zheng ◽  
Yanjun Zhao ◽  
Siyuan Sui ◽  
...  

Abstract The application of aluminum is often limited by low hardness, and plasma nitriding can make it have excellent mechanical property. The purpose of this study is to nitride the aluminum surface by non-thermal transferred arc plasma technology. During the plasma nitriding process, the maximum effective value of output current is about 390 mA and the overall temperature of the samples is much lower than the solidus temperature. It is found that the microstructure and mechanical properties of the aluminum surface are improved by adding hydrogen into the nitrogen plasma. Compared with the surface treated by pure N2 plasma, the particle size of aluminum surface treated by N2/H2 plasma is smaller. The surface hardness of aluminum is nearly doubled after being treated in 6.0 vol%H2 + 94.0 vol%N2 atmosphere.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022086
Author(s):  
Xiupeng Li ◽  
Yunyue Li ◽  
Sujuan Zhong ◽  
Yuanxun Shen ◽  
Weimin Long ◽  
...  

Abstract In this paper, a new type of AlSiMgCuNiAg filler metal was developed. The solidus temperature of the filler metal is 509.1°C and the liquidus temperature is 531.3°C. The filler metal has a good wetting and spreading effect on the surface of 6061 aluminum alloy. The CuAl2 phase in the brazing seam was greatly aggregated after brazed, while the CuAl2 phase was reduced and Mg2Si strengthening phase was formed when the brazed joints with heat treatment. The average shear strength of the brazed joint without heat treatment was 47.1MPa, and the average shear strength of the brazed joint with heat treatment reached to 108.7Mpa. The strength of the brazed joint with heat treatment was increased by about 131% relative to the strength of the brazed joint without heat treatment.


2021 ◽  
pp. 102276
Author(s):  
Chuyuan Zheng ◽  
Amir Mostafaei ◽  
Pierangeli Rodriguez de Vecchis ◽  
Ian Nettleship ◽  
Markus Chmielus

2021 ◽  
Vol 43 (2) ◽  
pp. 96-115
Author(s):  
O.V. Usenko

General sequence establishment of geological Precambrian events and associating formations, which were created in them, to the results of isotope age definition, is the task, which has no single valued solution for southwestern part of the Ukrainian Shield. Important is to create a general development model, which will describe the modern geological structure of an area, structural and textural rocks features, accounting PT-conditions in the Earth's crust during the Archean—Paleoproterozoic. Isotopic age determination demonstrates, that from the moment of protolith creation (not later than 3.75 billion years ago, up to 1.9 billion years ago), intrusion of mantle melts and partial melting of the lower crustal rocks, occurred many times over. Pobuzhie formation cannot be imagined, as a single process of accumulation, plunge, crumpling into folds and sedimentary strata metamorphism. It is necessary, to take into account, the plume (mantle) component of the general geodynamic process. In the structure of the Bug megablock and Golovanevskaya suture zone, two main structural plans are displayed. The main part of the territory displays a region of areal distribution of Archean enderbites (generated 2.8 billion years ago) and Proterozoic granites (generated 2.03 billion years ago). The paper compares the temperature distribution with depth, corresponding to the thermal model of the metamorphic temperatures found in the samples, and the solidus temperatures of the basic rocks. It is shown that at the time of the metamorphism development, 2.0 billion years ago, the rocks were at a depth of more than 20 km, and before that — at an even greater depth. During the Archean and Paleoproterozoic, the center of partial melting was repeatedly renewed here, since the temperatures were higher than the solidus temperature of gabbro. Metamorphic changes (and more often migmatization, partial melting and following crystallization in the granulite facies conditions) happened after the presence of the thermal asthenosphere on the core—mantle border, and were accompanied by bringing the substance from it. Therefore the main part of modern surface is folded by palingenic granites. In Archean and Paleoproterozoic the composition of substances were different. After 2.0 billion years ago the level of modern surface was located higher. The second structural plan is presented with vertical structures, building of which often close to concentrically zonal or linear monoclinal. They are confined to fault zones and nodes of their intersections. These structures contain rock complexes, which did not occur until 2.0 billion years ago on any craton in the world.


Author(s):  
Yanru Lu ◽  
Laura N. Bartlett ◽  
Ronald J. O'Malley ◽  
Simon N. Lekakh

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 538
Author(s):  
Yan Zhi Peng ◽  
Cai Ju Li ◽  
Jiao Jiao Yang ◽  
Jia Tao Zhang ◽  
Ju Bo Peng ◽  
...  

In electronic packaging, Sn-Zn lead-free solder has great application prospects. Sn-9Zn-xBi alloys were obtained by smelting. This paper details a systematic study of the effect of Bi on the microstructure, melting behavior, wettability, mechanical behavior, antioxidant properties, and electrical conductivity of Sn-9Zn-xBi alloy, as well as the interfacial reaction in Sn-9Zn-xBi/Cu joints. The coarse Zn-rich phase became larger with an increase in the addition of Bi, which is harmful to the oxidation resistance of the solders. The melting temperature, solidus temperature, and liquidus temperature decreased with the increase in the addition of Bi, but the melting range increased. Adding a proper amount of Bi could substantially improve the spreading rate of Sn-9Zn, but reduce its oxidation resistance. Because of the solid solution effect of Bi element, the tensile strength of the Sn-9Zn solders could be enhanced, but the plastic and electrical conductivity was decreased. The IMC layer of the Sn-9Zn and Cu joints consisted of the ε-CuZn5 phase and the γ-Cu5Zn8 phase. With an increase in the Bi element, the thickness of the interfacial reaction layer was firstly increased. When the Bi element content exceeded 3 wt.%, the inhibitory effect of the aggregated Bi elements on the formation of IMC was greater than the positive effect of the longer reaction time, and the thickness of the IMC decreased.


2021 ◽  
Author(s):  
Lindy Elkins-Tanton ◽  
Jenny Suckale ◽  
Sonia Tikoo

<p>Rocky planets go through at least one and likely multiple magma ocean stages, produced by the giant impacts of accretion. Planetary data and models show that giant impacts do not dehydrate either the mantle or the atmosphere of their target planets. The magma ocean liquid consists of melted target material and melted impactor, and so will be dominated by silicate melt, and also contain dissolved volatiles including water, carbon, and sulfur compounds.</p><p>As the magma ocean cools and solidifies, water and other volatiles will be incorporated into the nominally anhydrous mantle phases up to their saturation limits, and will otherwise be enriched in the remaining, evolving magma ocean liquids. The water content of the resulting cumulate mantle is therefore the sum of the traces in the mineral grains, and any water in trapped interstitial liquids. That trapped liquid fraction may in fact be by far the largest contributor to the cumulate water budget.</p><p>The water and other dissolved volatiles in the evolving liquids may quickly reach the saturation limit of magmas near the surface, where pressure is low, but degassing the magma ocean is likely more difficult than has been assumed in some of our models. To degas into the atmosphere, the gases must exsolve from the liquid and form bubbles, and those bubbles must be able to rise quickly enough to avoid being dragged down by convection and re-dissolved at higher pressures. If bubbles are buoyant enough (that is, large enough) to decouple from flow and rise, then they are also dynamically unstable and liable to be torn into smaller bubbles and re-entrained. This conundrum led to the hypothesis that volatiles do not significantly degas until a high level of supersaturation is reached, and the bubbles form a buoyant layer and rise in diapirs in a continuum dynamics sense. This late degassing would have the twin effects of increasing the water content of the cumulates, and of speeding up cooling and solidification of the planet.</p><p>Once the mantle is solidified, the timeclock until the start of plate tectonics begins. Modern plate tectonics is thought to rely on water to lower the viscosity of the asthenosphere, but plate tectonics is also thought to be the process by which water is brought into the mantle. Magma ocean solidification, however, offers two relevant processes. First, following solidification the cumulate mantle is gravitationally unstable and overturns to stability, carrying water-bearing minerals from the upper mantle through the transition zone and into the lower mantle. Upon converting to lower-mantle phases, these minerals will release their excess water, since lower mantle phases have lower saturation limits, thus fluxing the upper mantle with water. Second, the mantle will be near its solidus temperature still, and thus its viscosity will be naturally low. When fluxed with excess water, the upper mantle would be expected to form a low degree melt, which if voluminous enough with rise to help form the earliest crust, and if of very low degree, will further reduce the viscosity of the asthenosphere.</p>


2021 ◽  
Author(s):  
Harro Schmeling

<p><strong>Introduction</strong></p><p>At various regions within the dynamic earth melts are generated due to decompressional melting, reduction of the solidus temperature due to volatiles or due to elevated temperatures. They segregate from these partially molten regions, rise by various transport mechanisms and may form crustal magmatic systems where they are emplaced or erupt. The physics of various aspects of this magmatic cycle will be addressed.</p><p><strong>Melt transport mechanisms</strong></p><p>Starting from a partially molten region by which mechanism(s) does the melt segregate out of the melt source region and rise through the mantle or crust? The basic mechanism is two-phase flow, i.e. a liquid phase percolates through a solid, viscously deforming matrix. The corresponding equations and related issues such as compaction or effective matrix rheology are addressed. Beside simple Darcy flow, special solutions of the equations are addressed such as solitary porosity waves. Depending on the bulk to shear viscosity ratio of the matrix and the non-dimensional size of these waves, they show a variety of features: they may transport melt over large distances, or they show transitions from rising porosity waves to diapiric rise or to fingering. Other solutions of the equations lead to channeling, either mechanically or chemically driven. One open question is how do such channels transform into dykes which have the potential of rising through sub-solidus overburden. A recent hypothesis addresses the possibility that rapid melt percolation may reach the thermal non-equilibrium regime, i.e. the local temperature of matrix and melt may evolve differently.  Once dykes have been formed they may propagate upwards driven by melt buoyancy and controlled by the ambient stress field. Often in dynamic models the complexities of melt transport are simplified by parameterized melt extraction. The limitations of such simplifications will be addressed.</p><p><strong>Modelling magmatic systems in thickened continental crust </strong></p><p>Once basaltic melts rise from the mantle, they may underplate continental crust and generate silicic melts. Early dynamic models (Bittner and Schmeling, 1995, Geophys. J. Int.) showed that such silicic magma bodies may rise to mid-crustal depth by diapirism. More recent approaches (e.g. Blundy and Annan, 2016, Elements) emplace sill intrusions into the crust at various levels and calculate the thermal and melting effects responsible for the formation of mush zones. Recently Schmeling et al. (2019, Geophys. J. Int.) self-consistently modelled the formation of crustal magmatic systems, mush zones and magma bodies by including two-phase flow, melting/solidification and effective power-law rheology. In these models melt is found to rise to mid-crustal depths by a combination of compaction/decompaction assisted two-phase flow, sometimes including solitary porosity waves, diapirism or fingering. An open question in these models is whether or how dykes may self-consistently form to transport the melts to shallower depth. First models which combine elastic dyke-propagation (Maccaferri et al., 2019, G-cubed) with the two-phase flow crustal models are promising.</p>


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 396
Author(s):  
Jovid Rakhmonov ◽  
Mohamed Qassem ◽  
Daniel Larouche ◽  
Kun Liu ◽  
Mousa Javidani ◽  
...  

Accurate determination of the materials’ strength and ductility in the semi-solid state at near-solidus temperatures is essential, but it remains a challenging task. This study aimed to develop a new method to determine the stress-strain evolution in the semi-solid state of aluminum alloys within the Gleeble 3800 unit. Stress evolution was determined by the newly developed “L-gauge” method, which converted the displacement of the “restrained” jaw, measured using an L-gauge, into the force. This method gives the possibility to determine the flow stress more accurately, especially for the very low stress rang (1–10 MPa) in the semi-solid state at near-solidus temperatures. The digital image correlation technique implemented in the Gleeble unit allowed effective measurement of the heterogeneous strain fields evolving within the specimen under tensile loading. Therefore, the stress-strain curves measured in the semi-solid state help to better understand the alloy’s susceptibility to hot tearing. The results of an AA6111 alloy under different liquid fractions (2.8% at 535 °C and 5.8% at 571 °C) were demonstrated. The reliable stress-strain data and heterogenous strain distribution are beneficial to develop the thermomechanical models and hot-tearing criteria.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 338
Author(s):  
Antoni Woźnicki ◽  
Beata Leszczyńska-Madej ◽  
Grzegorz Włoch ◽  
Justyna Grzyb ◽  
Jacek Madura ◽  
...  

During the extrusion of aluminum alloys profiles using porthole dies, the temperature of the material in the welding chamber is one of crucial parameters determining the quality of longitudinal welds. In order to extend the permissible temperature range, the billets intended for this process should be characterized by the maximum attainable solidus temperature. Within the present work, the homogenization of AlZnMgCu alloys DC-cast (Direct Chill-cast) billets was investigated, with the aim of solidus temperature maximization. Conditions of soaking and cooling stages were analyzed. The materials were homogenized in laboratory conditions, and the microstructural effects were evaluated on the basis of DSC (Differential Scanning Calorimetry) tests and SEM/EDS (Scanning Electron Microscopy/Energy-Dispersive Spectroscopy) investigations. For all examined alloys, the unequilibrium low-melting microstructure components were dissolved during soaking, which led to the significant solidus temperature increase, in comparison to the as-cast state. The values within the range of 525–548 °C were obtained. In the case of alloy with highest Cu concentration, the application of two-step soaking was necessary. In order to take advantage of the high solidus temperature obtained after soaking, the cooling rate from homogenization must be controlled, and the effective cooling manner is strongly dependent on alloy composition. For high-Cu alloy, the solidus decreased, despite the fast cooling and the careful billets preheating being necessary.


Sign in / Sign up

Export Citation Format

Share Document