grain refiner
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 81)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 327 ◽  
pp. 54-64
Author(s):  
Ivo Spacil ◽  
David Holec ◽  
Peter Schumacher ◽  
Jiehua Li

Different Ta concentrations together with stochiometric grain refiner (Al-2.2Ti-1B) in Al-Si-Mg based alloys were investigated with the aim to elucidate grain refinement mechanisms. Post-solidification microstructure was characterised using optical microscopy and scanning electron microscopy (SEM), with a special focus on the Ta-rich layer (more likely to be Al3Ta) on the basal planes (0001) of TiB2. A significant grain refinement was observed by using the solute Ta together with stochiometric grain refiner (Al-2.2Ti-1B). In order to further elucidate the formation of Ta-rich layer on the basal planes (0001) of TiB2, the Density Functional Theory (DFT) calculation were also performed to determine the interface energies of different interfaces and sandwich configurations, including Al (111), Al3Ti (112) and Al3Ta (112) at the interface of TiB2 basal plane (0001). It was found that the interface energy for Ti-terminated TiB2 at the interface throughout all configurations involved in this paper is lower than that for B-terminated TiB2, indicating that Ti-terminated TiB2 is more favourable. It was also found that the Al3Ta configuration yields the same interface energies as the Al3Ti configuration. Furthermore, the interface energy of the sandwich configuration also shows nearly identical values along the TiB2 // Al3Ti and TiB2 // Al3Ta interface energy, strongly indicating that the solute Ti can be fully replaced by the solute Ta.


Author(s):  
Jiawei Yang ◽  
Yijiang Xu ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
...  

AbstractIt is well known that the filtration efficiency of ceramic foam filters (CFF) on aluminum melt can be significantly reduced by the addition of grain refiner particles under a high inclusion load. Also, it is usually considered that the filtration process has little impact on grain refinement efficiency. In this work, the influence of inclusions and filtration on the grain refinement effect of AA 6060 alloy has been studied. This was done through TP-1 type solidification experiments where the aluminum melt prior to and after the filter during a pilot-scale filtration test was investigated. In the experiments, 80 PPi CFFs were used to filtrate aluminum melt with an ultra-high inclusion load and two addition levels of Al–3Ti–1B master alloys. It is found that both inclusions and filtration significantly reduce the grain refinement efficiency of the grain refiner master alloys. A detailed characterization of the used filters shows that the reduction of grain refinement efficiency is due to the strong adherence of TiB2 particles to the oxide films, which are blocked by the CFF during filtration. A grain size prediction model based on deterministic nucleation mechanisms and dendritic growth kinetics has been applied to calculate the solidification grain size and estimate the loss of effective grain refiner particles during filtration. It is shown that due to the strong adherence between TiB2 particles and oxide films in the melt, the high addition level of aluminum chips also has an influence on reducing the grain refinement efficiency of aluminum melt without filtration. The results of this study extended our understanding of the behavior and performance of inoculant particles in CFF and their interactions with the inclusions.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Murat Çolak ◽  
◽  
Derya Dispinar ◽  

In this work, porosity formation with regard to the change in the metallostatic pressure was investigated. Different geometry was generated to simulate the effect of pressure on critical solid fraction. A380 alloy was sand cast. Additionally, the effect of grain refiner and modifiers was also investigated. Samples were subjected to X-ray radiography and density measurement to quantify the pore size and distribution.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7193
Author(s):  
Bosung Seo ◽  
Hyeon-Tae Im ◽  
Ki-Beom Park ◽  
Kwangsuk Park ◽  
Hyung-Ki Park

Microstructures and corrosion properties of pure titanium were characterized when iron was used as a grain refiner. The added Fe element acted as a strong grain refiner for pure titanium by forming β Ti phase at grain boundaries, and 0.15 wt% Fe was revealed to be a sufficient amount to make the grain size of pure titanium below 20 μm, which was the requirement for the desired titanium cathode. However, corrosion resistance was decreased with the Fe amount added. From the open circuit potential (OCP) results, it was obvious that the TiO2 stability against the reducing acid environment was deteriorated with the Fe amount, which seemed to be the main reason for the decreased corrosion resistance. Electrochemical impedance spectroscopy (EIS) results showed that both the decrease in the compact oxide film’s resistance (Rb) and the appearance of the outer porous film occurred as a result of the dissolution of the TiO2 layer, whose phenomena became more apparent as more Fe was added.


Author(s):  
Geir Langelandsvik ◽  
Magnus Eriksson ◽  
Odd M. Akselsen ◽  
Hans J. Roven

AbstractAluminium alloys processed by wire arc additive manufacturing (WAAM) exhibit a relatively coarse microstructure with a columnar morphology. A powerful measure to refine the microstructure and to enhance mechanical properties is to promote grain refinement during solidification. Addition of ceramic nanoparticles has shown great potential as grain refiner and strengthening phase in aluminium alloys. Thus, an Al-Mg alloy mixed with TiC nanoparticles was manufactured by the novel metal screw extrusion method to a wire and subsequently deposited by WAAM. Measures to restrict oxidation of magnesium during metal screw extrusion were examined. Purging of CO2 gas into the extrusion chamber resulted in a remarkable reduction in formation of MgO and Mg(OH)2. TiC decomposed to Al3Ti during WAAM deposition, leading to a significant grain refinement of 93% compared to a commercial benchmark. The presence of remaining TiC nanoparticles accounted for an increased hardness of the WAAM material through thermal expansion mismatch strengthening and Orowan strengthening. Exposure of TiC to moisture in air during metal screw extrusion increased the internal hydrogen content significantly, and a highly porous structure was seen after WAAM deposition.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6705
Author(s):  
Fang Yu ◽  
Xiangjie Wang ◽  
Tongjian Huang ◽  
Daiyi Chao

In this paper, two types of grain refining alloys, Al-3Ti-0.15C and Al-5Ti-0.2B, were used to cast two types of 7050 rolling ingots. The effect of Al-3Ti-0.15C and Al-5Ti-0.2B grain refiners on fracture toughness in different directions for 7050 ingots after heat treatment and 7050-T7651 plates was investigated using optical electron microscopy (OEM) and scanning electron microscopy (SEM). Mechanical properties testing included both tensile and plane strain fracture toughness (KIC). The grain size was measured from the surface to the center of the 7050 ingots with two different grain refiners. The fracture surface was analyzed by SEM and energy dispersive spectrometer (EDS). The experiments showed the grain size from edge to center was reduced in 7050 ingots with both the TiC and TiB refiners, and the grain size was larger for ingots with the Al-3Ti-0.15C grain refiner at the same position. The tensile properties of 7050 ingots after heat treatment with Al-3Ti-0.15C grain refiner were 1–2 MPa lower than the ingot with the Al-5Ti-0.2B grain refiner. For the 7050-T7651 100 mm thick plate with the Al-3Ti-0.15C grain refiner, for the L direction, the tensile properties were lower by about 10~15 MPa; for the plate with the Al-3Ti-0.15C refiner than plate with Al-5Ti-0.2B refiner, for the LT direction, the tensile properties were lower by about 13–18 MPa; and for the ST direction, they were lower by about 8–10 MPa compared to that of Al-5Ti-0.2B refiner. The fracture toughness of the 7050-T7651 plate produced using the Al-3Ti-0.15C ingot was approximately 2–6 MPa · m higher than the plate produced from the Al-5Ti-0.2B ingot. Fractography of the failed fracture toughness specimens revealed that the path of crack propagation of the 7050 ingot after heat treatment produced from the Al-3Ti-0.15C grain refiner was more tortuous than in the ingot produced from the Al-5Ti-0.2B, which resulted in higher fracture toughness.


2021 ◽  
Vol 326 ◽  
pp. 111-124
Author(s):  
Przemysław Snopiński

In the first stage of the experiment, the effect of Al10Sr modification and Al5TiB grain refiner and interaction of both additions on the microstructure of AlMg5Si2Mn alloy and Mg2Si phase morphology was investigated. Then the influence of Al10Sr and Al5TiB addition on nucleation temperatures of various intermetallic phases formed in AlMg5Si2Mn alloy also have been interpreted by the formation of distinct peaks in the first derivative cooling curve and microstructural observations. It was found that modification has a meaningful influence on the microstructure of the investigated alloy as well as the crystallization process


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
K. Ch Appa Rao ◽  
Anil Kumar Birru ◽  
Praveen Kumar Bannaravuri ◽  
E. Daniel Francis

PurposeNowadays, ample industries are fascinated to look for high strength and light weight materials for the development of robust parts. Because of light weight and high stiffness to weight ratio; usage of aluminum parts is growing rapidly, especially in automotive engineering. Process improvement of Al alloys and their grain structure refinement is the current area of interest in casting companies. In this research work, an investigation has been carried out to enhance the process improvement of die casting by optimization of various significant parameters and their refinement of grains by the effect of Nb-C novel grain refiner.Design/methodology/approachL27 orthogonal array (OA) has been considered to optimize the preferred casting input parameters such as molten metal temperature (°C), die temperature (°C), injection pressure (bar), Al-3.5Nb-1.5 C novel grain refiner and Ni alloying additions as key process parameters in order to increase the quality and efficiency of Al-9Si-3Cu aluminum alloy die casting by reducing the porosity formation.FindingsIt was observed that the porosity values have significantly decreased from 0.88% to 0.25% particularly at 0.1 wt.% of new grain refiner and 0.5 wt. % of Al-6Ni master alloy. As per the ANOVA results, it was observed that Al-3.5FeNb-1.5 C grain refiner (F value 2609.22), Al-6Ni alloying addition (F value 1329.13), molten metal temperature (F value 1002.43) and, injection pressure (F value 448.06) are the factors that significantly affects the porosity, whereas die temperature was found to be insignificant. The results show that new grain refiner is one the most significant factor among the other selected parameters. The contribution of the new grain refiner to the variation of mean casting porosity is around 57.74%. confidence interval (CI) has also been estimated as 0.013 for 95% consistency level to validate the predicted range of optimum casting porosity of aforesaid alloy.Originality/valueTo the best of the authors' knowledge, no study has been conducted in the past to investigate the combined effect of these die casting parameters and composition factors for the development of Al-Si robust cast parts. The paper represents original research and provides new information for the fabrication of die casting parts.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
Stig Tjøtta ◽  
...  

AbstractThe addition of grain refiner particles in the aluminum melt is known to reduce the filtration efficiency of ceramic foam filter (CFF). In the present work, a systematic study on the influence of the addition level of Al-Ti-B master alloys and the inclusion level on the filtration performance of aluminum melt has been investigated by pilot-scale filtration tests using 50 PPi and 80 PPi filters. The inclusion level of the melt has been measured using both LiMCA and PoDFA. For 80 PPi CFF, the N20 inclusion (diameter larger than 20 μm) value in the post-filtrated melt does not increase when an ultra-high level of inclusions is introduced in the form of chips. For the melts with a low level of grain refiners (~ 0.5 kg/ton), the filtration performance of CFF is not affected by grain refiners, regardless of inclusion load. An addition of 2.0 kg/ton grain refiners reduces the filtration performance for melts with a high inclusion level, where post-filtration inclusions with the size of 15-20 µm were significantly increased. It is found, however, for the melts with an ultra-high inclusion load, the filtration performance of 80 PPi CFF is not affected by the grain refiner addition up to 2.0 kg/ton. The interactions between inclusions and grain refiner particles and the filtration mechanism have been studied by characterizing the spent filter and measuring the pressure drop during the filtration process. It is revealed that the strong adherence between oxide film with grain refiner particles dominates the grain refiner influence on the filtration performance of CFF. During the filtration process, oxide films have strong influences on the capturing of other inclusions such as oxide particles and TiB2 particles by the filter. A mechanism based on the interactions between oxide films and grain refiner particles is proposed to explain the CFF performance under the influence of grain refiner.


Sign in / Sign up

Export Citation Format

Share Document