High-resolution electron microscopy and microanalysis of ordered arrays of size-controlled amorphous gallium nitride nanoparticles synthesized in situ in a block copolymer matrix

2002 ◽  
Vol 82 (9) ◽  
pp. 1047-1054 ◽  
Author(s):  
Valerie J. Leppert ◽  
Amith K. Murali ◽  
Subhash H. Risbud ◽  
Matthias Stender ◽  
Philip P. Power ◽  
...  
1997 ◽  
Vol 12 (7) ◽  
pp. 1790-1795 ◽  
Author(s):  
L. G. Yu ◽  
J. Y. Dai ◽  
Z. P. Xing ◽  
D. X. Li ◽  
J. T. Guo ◽  
...  

The structures of interfaces in NiAl-matrix in situ composites reinforced by TiC particulates were studied by means of high-resolution electron microscopy (HREM). No consistent orientation relationship between TiC particles and the NiAl matrix was found. In most cases, TiC particles bonded well to the NiAl matrix free from any interfacial phases. However, in some cases, an interfacial amorphous layer with a thickness of about 3 nm was found. The annealed NiAl–TiC composite showed a good chemical compatibility between the TiC particles and the NiAl matrix, though, some interfacial layers between TiC and NiAl, which were determined to be C-deficient TiC, were found. NiAl precipitates were observed in the TiC particles of the annealed specimens.


Author(s):  
M. R. McCartney ◽  
David J. Smith

The examination of surfaces requires not only that they be free of adsorbed layers but the environment of the sample must also be maintained at high vacuum so that the surfaces remain clean. The possibility of resolving surface structures with atomic resolution has provided the motivation for optimizing intermediate and high voltage electron microscopes for this particular application. Electron microscopy offers a variety of techniques which have the capability of achieving atomic level detail of surfaces including plan-view imaging, REM and profile imaging. Operation at higher voltages permits reasonable pole piece dimensions thereby providing space for in situ studies yet still compatible with high resolution. Moreover, video systems can be attached which permit observation and recording of dynamic phenomena without compromising microscope performance.


Sign in / Sign up

Export Citation Format

Share Document