Charge-carrier transport in poly(n-propylmethylsilane) over a wide temperature range encompassing the glass transition and the melting point

1990 ◽  
Vol 61 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Kenji Yokoyama ◽  
Masaaki Yokoyama
1984 ◽  
Vol 49 (6) ◽  
pp. 575-577 ◽  
Author(s):  
M. Fujino ◽  
Y. Kanazawa ◽  
H. Mikawa ◽  
S. Kusabayashi ◽  
M. Yokoyama

2019 ◽  
Author(s):  
Hannes Hempel ◽  
Andrei Petsiu ◽  
Martin Stolterfoht ◽  
Pascal Becker ◽  
Dieter Neher ◽  
...  

2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Michael C. Heiber ◽  
Klaus Kister ◽  
Andreas Baumann ◽  
Vladimir Dyakonov ◽  
Carsten Deibel ◽  
...  

1979 ◽  
Vol 53 (3-4) ◽  
pp. 271-280 ◽  
Author(s):  
S. C. Mathur ◽  
B. Kumar ◽  
Keya Roy

2012 ◽  
Vol 717-720 ◽  
pp. 641-644
Author(s):  
Travis J. Anderson ◽  
Karl D. Hobart ◽  
Luke O. Nyakiti ◽  
Virginia D. Wheeler ◽  
Rachael L. Myers-Ward ◽  
...  

Graphene, a 2D material, has motivated significant research in the study of its in-plane charge carrier transport in order to understand and exploit its unique physical and electrical properties. The vertical graphene-semiconductor system, however, also presents opportunities for unique devices, yet there have been few attempts to understand the properties of carrier transport through the graphene sheet into an underlying substrate. In this work, we investigate the epitaxial graphene/4H-SiC system, studying both p and n-type SiC substrates with varying doping levels in order to better understand this vertical heterojunction.


RSC Advances ◽  
2016 ◽  
Vol 6 (50) ◽  
pp. 44838-44842 ◽  
Author(s):  
Abdus Salam Sarkar ◽  
Vishwanath Kalyani ◽  
Kenneth E. Gonsalves ◽  
Chullikkattil P. Pradeep ◽  
Suman Kalyan Pal

We elucidate the carrier transport mechanism in a novel polyoxometalate–polymer (POM–MAPDST) hybrid containing molybdenum transition metal.


Sign in / Sign up

Export Citation Format

Share Document