The two-dimensional structure of low strain rate counterflow nonpremixed-methane flames in normal and microgravity

2008 ◽  
Vol 12 (2) ◽  
pp. 283-302 ◽  
Author(s):  
C. B. Oh ◽  
A. Hamins ◽  
M. Bundy ◽  
J. Park
2015 ◽  
Vol 667 ◽  
pp. 286-291
Author(s):  
Hai Tao Liu ◽  
Neng Chen ◽  
Ya Zhou Sun

In this paper, according to the principle of building the constitutive model of polymer material, the one-dimensional structure of the ZWT material constitutive model is added to dashpot element in parallel, and in which strain rate and coefficient of viscosity is introduced and the nonlinear viscoelastic constitutive model of Polycarbonate material is achieved. Additionally, tensile test at low strain rate and Hopkinson test at high strain rate of polycarbonate material are carried out, and the change rule of yield strength of polycarbonate material is obtained both at high strain rate and low strain rate. According to the experimental data, the parameters of the constitutive model have been optimized and fitted using ant colony algorithm, and then the fitted results are compared with experimental results. The comparative results show that the improved ZWT constitutive model can reasonably represent the nonlinear characteristics of polycarbonate material at different strain rate.


2003 ◽  
Vol 133 (3) ◽  
pp. 299-310 ◽  
Author(s):  
M. Bundy ◽  
A. Hamins ◽  
Ki Yong Lee

Author(s):  
José L. Carrascosa ◽  
José M. Valpuesta ◽  
Hisao Fujisawa

The head to tail connector of bacteriophages plays a fundamental role in the assembly of viral heads and DNA packaging. In spite of the absence of sequence homology, the structure of connectors from different viruses (T4, Ø29, T3, P22, etc) share common morphological features, that are most clearly revealed in their three-dimensional structure. We have studied the three-dimensional reconstruction of the connector protein from phage T3 (gp 8) from tilted view of two dimensional crystals obtained from this protein after cloning and purification.DNA sequences including gene 8 from phage T3 were cloned, into Bam Hl-Eco Rl sites down stream of lambda promotor PL, in the expression vector pNT45 under the control of cI857. E R204 (pNT89) cells were incubated at 42°C for 2h, harvested and resuspended in 20 mM Tris HC1 (pH 7.4), 7mM 2 mercaptoethanol, ImM EDTA. The cells were lysed by freezing and thawing in the presence of lysozyme (lmg/ml) and ligthly sonicated. The low speed supernatant was precipitated by ammonium sulfate (60% saturated) and dissolved in the original buffer to be subjected to gel nitration through Sepharose 6B, followed by phosphocellulose colum (Pll) and DEAE cellulose colum (DE52). Purified gp8 appeared at 0.3M NaCl and formed crystals when its concentration increased above 1.5 mg/ml.


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Muhammad Yar Khan ◽  
Yan Liu ◽  
Tao Wang ◽  
Hu Long ◽  
Miaogen Chen ◽  
...  

AbstractMonolayer MnCX3 metal–carbon trichalcogenides have been investigated by using the first-principle calculations. The compounds show half-metallic ferromagnetic characters. Our results reveal that their electronic and magnetic properties can be altered by applying uniaxial or biaxial strain. By tuning the strength of the external strain, the electronic bandgap and magnetic ordering of the compounds change and result in a phase transition from the half-metallic to the semiconducting phase. Furthermore, the vibrational and thermodynamic stability of the two-dimensional structure has been verified by calculating the phonon dispersion and molecular dynamics. Our study paves guidance for the potential applications of these two mono-layers in the future for spintronics and straintronics devices.


2020 ◽  
Vol 39 (1) ◽  
pp. 457-465
Author(s):  
Jiangpeng Yan ◽  
Zhimin Zhang ◽  
Jian Xu ◽  
Yaojin Wu ◽  
Xi Zhao ◽  
...  

AbstractThe cylindrical samples of TC4 titanium alloy prepared by spark plasma sintering (SPS) were compressed with hot deformation of 70% on the thermosimulation machine of Gleeble-1500. The temperature of the processes ranged from 850°C to 1,050°C, and the strain rates varied between 0.001 and 5 s−1. The relative density of the sintered and compressed samples was measured by the Archimedes principle. During hot deformation, the microstructure of the sample was observed. The results show that the average relative density of the samples was 90.2% after SPS. And the relative density was about 98% after the hot deformation of 70%. Under high temperature (>950°C), the sensitivity of flow stress to temperature was reduced. At low strain rate (0.001 s−1), the increase in the deformation temperature promoted the growth of dynamic recrystallization (DRX). At the same temperature, the increase in strain rate slowed down the growth of DRX grains. And the variation tendency was shown from the basket-weave structure to the Widmanstätten structure at a low strain rate (<0.1 s−1), with increase in the strain rate.


2001 ◽  
Vol 13 (12) ◽  
pp. 3699-3708 ◽  
Author(s):  
P. W. C. Vosbeek ◽  
G. J. F. van Heijst ◽  
V. P. Mogendorff

Sign in / Sign up

Export Citation Format

Share Document