Down-regulation of lncRNA FEZF1-AS1 mediates regulatory T cell differentiation and further blocks immune escape in colon cancer

Author(s):  
Sen Hong ◽  
Zhenkun Yan ◽  
YuMei Song ◽  
MiaoMiao Bi ◽  
Shiquan Li
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qi-Rong Xu ◽  
Jian Tang ◽  
Hong-Ying Liao ◽  
Ben-Tong Yu ◽  
Xiang-Yuan He ◽  
...  

Abstract Background Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been implicated in the progression of esophageal cancer (EC). However, the specific mechanism of the involvement of MEG3 in EC development in relation to the regulation of immune escape remains uncertain. Thus, the aim of the current study was to investigate the effect of MEG3 on EC via microRNA-149-3p (miR-149-3p). Methods Gain- and loss-of-function experiments were initially performed in EC cells in addition to the establishment of a 4-nitroquinoline 1-oxide-induced EC mouse model aimed at evaluating the respective roles of forkhead box P3 (FOXP3), MEG3, miR-149-3p, mouse double minute 2 homolog (MDM2) and p53 in T cell differentiation and immune escape observed in EC. Results EC tissues were found to exhibit upregulated FOXP3 and MDM2 while MEG3, p53 and miR-149-3p were all downregulated. FOXP3 was confirmed to be a target gene of miR-149-3p with our data suggesting it reduced p53 ubiquitination and degradation by means of inhibiting MDM2. P53 was enriched in the promoter of miR-149-3p to upregulate miR-149-3p. The overexpression of MEG3, p53 or miR-149-3p or silencing FOXP3 was associated with a decline in CD25+FOXP3+CD4+ T cells, IL-10+CD4+ T cells and IL-4+CD4+ T cells in spleen tissues, IL-4, and IL-10 levels as well as C-myc, N-myc and Ki-67 expression in EC mice. Conclusion Collectively, MEG3 decreased FOXP3 expression and resulted in repressed regulatory T cell differentiation and immune escape in EC mice by upregulating miR-149-3p via MDM2-mediated p53.


2015 ◽  
Vol 195 (9) ◽  
pp. 4154-4161 ◽  
Author(s):  
Ruan Zhang ◽  
Christopher M. Borges ◽  
Martin Y. Fan ◽  
John E. Harris ◽  
Laurence A. Turka

2020 ◽  
Vol 117 (24) ◽  
pp. 13740-13749 ◽  
Author(s):  
Yusuke Higuchi ◽  
Jun-ichirou Yasunaga ◽  
Yu Mitagami ◽  
Hirotake Tsukamoto ◽  
Kazutaka Nakashima ◽  
...  

Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of a T cell neoplasm and several inflammatory diseases. A viral gene, HTLV-1 bZIP factor (HBZ), induces pathogenic Foxp3-expressing T cells and triggers systemic inflammation and T cell lymphoma in transgenic mice, indicating its significance in HTLV-1–associated diseases. Here we show that, unexpectedly, a proinflammatory cytokine, IL-6, counteracts HBZ-mediated pathogenesis. Loss of IL-6 accelerates inflammation and lymphomagenesis in HBZ transgenic mice. IL-6 innately inhibits regulatory T cell differentiation, suggesting that IL-6 functions as a suppressor against HBZ-associated complications. HBZ up-regulates expression of the immunosuppressive cytokine IL-10. IL-10 promotes T cell proliferation only in the presence of HBZ. As a mechanism of growth promotion by IL-10, HBZ interacts with STAT1 and STAT3 and modulates the IL-10/JAK/STAT signaling pathway. These findings suggest that HTLV-1 promotes the proliferation of infected T cells by hijacking the machinery of regulatory T cell differentiation. IL-10 induced by HBZ likely suppresses the host immune response and concurrently promotes the proliferation of HTLV-1 infected T cells.


Sign in / Sign up

Export Citation Format

Share Document