scholarly journals HTLV-1 induces T cell malignancy and inflammation by viral antisense factor-mediated modulation of the cytokine signaling

2020 ◽  
Vol 117 (24) ◽  
pp. 13740-13749 ◽  
Author(s):  
Yusuke Higuchi ◽  
Jun-ichirou Yasunaga ◽  
Yu Mitagami ◽  
Hirotake Tsukamoto ◽  
Kazutaka Nakashima ◽  
...  

Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of a T cell neoplasm and several inflammatory diseases. A viral gene, HTLV-1 bZIP factor (HBZ), induces pathogenic Foxp3-expressing T cells and triggers systemic inflammation and T cell lymphoma in transgenic mice, indicating its significance in HTLV-1–associated diseases. Here we show that, unexpectedly, a proinflammatory cytokine, IL-6, counteracts HBZ-mediated pathogenesis. Loss of IL-6 accelerates inflammation and lymphomagenesis in HBZ transgenic mice. IL-6 innately inhibits regulatory T cell differentiation, suggesting that IL-6 functions as a suppressor against HBZ-associated complications. HBZ up-regulates expression of the immunosuppressive cytokine IL-10. IL-10 promotes T cell proliferation only in the presence of HBZ. As a mechanism of growth promotion by IL-10, HBZ interacts with STAT1 and STAT3 and modulates the IL-10/JAK/STAT signaling pathway. These findings suggest that HTLV-1 promotes the proliferation of infected T cells by hijacking the machinery of regulatory T cell differentiation. IL-10 induced by HBZ likely suppresses the host immune response and concurrently promotes the proliferation of HTLV-1 infected T cells.

2020 ◽  
Author(s):  
Emilie Coppin ◽  
Bala Sai Sundarasetty ◽  
Susann Rahmig ◽  
Jonas Blume ◽  
Nikita A. Verheyden ◽  
...  

AbstractHumanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T cell differentiation remains inefficient. We generated mice expressing human interleukin (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements. After transfer of human cord blood-derived hematopoietic stem and progenitor cells, transgenic mice on the NSGW41 background, termed NSGW41hIL7, showed elevated and prolonged human cellularity in the thymus while maintaining physiological ratios of thymocyte subsets. As a consequence, numbers of functional human T cells in the periphery were increased without evidence for pathological lymphoproliferation or aberrant expansion of effector or memory-like T cells. We conclude that the novel NSGW41hIL7 strain represents an optimized mouse model for humanization to better understand human T cell differentiation in vivo and to generate a human immune system with a better approximation of human lymphocyte ratios.


Retrovirology ◽  
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Masao Matsuoka ◽  
Jean-Michel Mesnard

AbstractHuman T cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. The HTLV-1 bZIP factor (HBZ) gene is constantly expressed in HTLV-1 infected cells and ATL cells. HBZ protein suppresses transcription of the tax gene through blocking the LTR recruitment of not only ATF/CREB factors but also CBP/p300. HBZ promotes transcription of Foxp3, CCR4, and T-cell immunoreceptor with Ig and ITIM domains (TIGIT). Thus, HBZ is critical for the immunophenotype of infected cells and ATL cells. HBZ also functions in its RNA form. HBZ RNA suppresses apoptosis and promotes proliferation of T cells. Since HBZ RNA is not recognized by cytotoxic T cells, HTLV-1 has a clever strategy for avoiding immune detection. HBZ plays central roles in maintaining infected T cells in vivo and determining their immunophenotype.


2004 ◽  
Vol 199 (3) ◽  
pp. 423-428 ◽  
Author(s):  
Alla Skapenko ◽  
Jan Leipe ◽  
Uwe Niesner ◽  
Koen Devriendt ◽  
Rolf Beetz ◽  
...  

The delineation of the in vivo role of GATA-3 in human T cell differentiation is a critical step in the understanding of molecular mechanisms directing human immune responses. We examined T cell differentiation and T cell–mediated effector functions in individuals lacking one functional GATA-3 allele. CD4 T cells from GATA-3+/− individuals expressed significantly reduced levels of GATA-3, associated with markedly decreased T helper cell (Th)2 frequencies in vivo and in vitro. Moreover, Th2 cell–mediated effector functions, as assessed by serum levels of Th2-dependent immunoglobulins (Igs; IgG4, IgE), were dramatically decreased, whereas the Th1-dependent IgG1 was elevated compared with GATA-3+/+ controls. Concordant with these data, silencing of GATA-3 in GATA-3+/+ CD4 T cells with small interfering RNA significantly reduced Th2 cell differentiation. Moreover, GATA-3 mRNA levels increased under Th2-inducing conditions and decreased under Th1-inducing conditions. Taken together, the data strongly suggest that GATA-3 is an important transcription factor in regulating human Th2 cell differentiation in vivo.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2761-2761
Author(s):  
Nicholas J. Hess ◽  
David Turicek ◽  
Amy Hudson ◽  
Peiman Hematti ◽  
Jenny Gumperz ◽  
...  

Abstract Acute graft-vs-host disease (aGVHD) and cancer relapse remain the primary complications following an allogeneic hematopoietic stem cell transplantation (allo-HSCT) for malignant blood disorders. While post-transplant cyclophosphamide combined with standard GVHD prophylaxis has greatly reduced the overall prevalence and severity of aGVHD, relapse rates remain a concern. There is thus a need to identify the specific human T cell populations mediating GVHD vs GVL activity as a means to develop targeted therapeutics capable of controlling aGVHD without inhibiting GVL activity. In this study, we identify a novel human T cell population that develops after transplant that is predictive and sufficient for GVHD pathology. To determine the role of human T cell populations in aGVHD, we performed xenogeneic transplantation studies using primary human graft tissue from a variety of sources (peripheral blood, G-CSF mobilized peripheral blood, bone marrow and umbilical cord blood) in addition to collecting primary human aGVHD blood samples from our clinic. Using the LD50 dose of human graft tissue, we identified a novel mature CD4 +/CD8αβ + double positive (DP) T cell population that only developed after transplantation. The development of this population was further confirmed in aGVHD patients from our clinic. The presence of DP T cells, irrespective of graft source, was also predictive of lethal GVHD in as early as one week after xenogeneic transplantation. To identify the origin of DP T cells, we transplanted isolated human CD4 or CD8 T cells into mice which showed that DP T cells only arise from the CD8 pool. Furthermore, re-transplantation of flow-sorted CD8 T cells from GVHD mice did not reveal a 2nd wave of DP T cell differentiation. This data, in addition to their highly proliferative state, suggests that DP T cells represent highly activated CD8 T cell clones. The ability of these CD8-derived DP T cells to gain CD4 expression coincides with their co-expression of both RUNX3 and THPOK, the master transcription factors of the CD8 and CD4 lineages respectively, that classically repress each other. Intracellular cytokine staining also revealed that DP T cells are the primary activated T cell population in xenogeneic GVHD, secreting both modulatory and cytotoxic cytokines (e.g. IFNγ, IL-17A, IL-22, perforin and granzyme). Ex vivo re-stimulation or re-transplantation of flow-sorted DP T cells showed that this T cell population is capable of dividing and expanding independent of CD4 and CD8 single positive T cells with the majority of the isolated DP T cells retaining their co-expression of CD4 and CD8. Finally, transplantation of either isolated human peripheral blood CD4 or CD8 T cell populations were capable of causing lethal GVHD. Conversely, re-transplantation of flow-sorted DP, CD8 or CD4 T cells from GVHD mice revealed that DP and CD4 T cells are sufficient to mediate GVHD pathology but re-transplanted CD8 T cell are not. This correlates with the absence of DP T cell differentiation in that re-transplanted CD8 population. The differentiation of DP T cells from chronically activated CD8 T cells represents a novel mechanism of GVHD pathology not previously described. The presence of DP T cells in other chronic inflammatory human diseases also suggests a broader pathology mediated by DP T cells. Further understanding of DP T cell differentiation and pathology may lead to targeted prophylaxis and/or treatment regimens for aGVHD and other human chronic inflammatory diseases. Figure 1 Figure 1. Disclosures Capitini: Nektar Therapeutics: Honoraria; Novartis: Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2470-2470
Author(s):  
James A Kennedy ◽  
Renata Teixeira ◽  
Sara Berthiaume ◽  
Frederic Barabe

Abstract Abstract 2470 LMO2 is overexpressed in a significant percentage of human T cell acute lymphoblastic leukemia (T-ALL) and its locus has been the target of insertional mutagenesis in gene therapy trials. In the past years, 4 X-linked severe combined immunodeficiency (X-linked SCID) and one Wiskott-Aldrich syndrome (WAS) patients who were treated by retrovirus-mediated gene therapy developed T-ALL as a result of retroviral integration in the LMO2 locus. In these patients, leukemia developed 2 to 3 years after gene therapy without prior significant haematological abnormalities. However, both the latency of disease and the finding of additional somatic mutations and/or translocations in these leukemias suggest that the overexpression of LMO2 alone is insufficient to generate leukemia, a notion that has been supported by studies in mouse. Though LMO2 is typically recognized as a T-cell oncogene, reports have shown that it is also aberrantly expressed in acute myeloid leukemias (AML), chronic myeloid leukemia (CML), B-ALL and some non-hodgkin B cell lymphomas. In order to study the impact of LMO2 overexpression on human hematopoietic stem/progenitor cells, a lentiviral vector was used to express this oncogene together with EGFP in lineage-depleted umbilical cord blood. In myeloid-promoting cultures, LMO2 had no effect on either differentiation or proliferation. Moreover, the expression of LMO2 did not modify the frequency or lineage distribution of colony forming progenitors compared to controls. However, significant differences were noted when transduced cells were assayed on OP9-Delta-Like 1 (DL1) stroma, an in vitro system that promotes T cell proliferation and differentiation. Cells overexpressing LMO2 were blocked at the double negative stage (CD4-CD8-) of differentiation and proliferated 50 to 100 times more than control cells. However, these cells were not immortalized as they proliferated for a median of 75 days, versus 50 days for controls. Immunodeficient mice transplanted with primitive human hematopoietic cells expressing LMO2 (hereafter referred as LMO2 mice) had bone marrow engraftment levels comparable to controls at 20–24 weeks post-transplant. Neither B-lymphoid nor myeloid development were affected by LMO2 overexpression. Strikingly, in the thymus, the percentage of EGFP+ cells was significantly increased in LMO2 mice compared to controls (mean of 47.7% versus 8.8%, p=0.0001), clearly indicating that expression of this oncogene enhances thymic T-cell engraftment. We next analyzed the phenotype of LMO2-expressing T cells in the thymus and peripheral blood of these mice. Surprisingly, unlike our in vitro studies, there was no evidence of a block at the DN-stage of differentiation. Instead, there were significantly less EGFP+ DN cells in the thymi of LMO2 mice compared to controls (mean of 7.5% vs 14.5%, p=0.035). These results clearly demonstrate that unlike what was observed in OP9-DL1 co-cultures, LMO2 overexpression does not induce a block in T-cell differentiation in our in vivo system. One possible explanation for this difference is the constitutive NOTCH signaling provided via DL1 on stroma compared to the in vivo setting where LMO2-expressing cells would encounter different levels and forms of NOTCH signaling throughout development. To test this hypothesis, LMO2 cells were cultured on OP9-DL1 stroma for 50 days then switched onto OP9 stroma lacking NOTCH ligand. Upon transfer, the DN cells promptly stopped proliferating and differentiated into DP (CD4+CD8+) cells expressing CD3 and TCRαβ. Thus, our results suggest that in the in vivo setting, as cells migrate through the thymus and face a decrease in NOTCH signaling, LMO2 overexpression alone can promote proliferation, but is not sufficient to maintain a differentiation block. However, constitutive NOTCH signaling can cooperate with LMO2 overexpression to block T cell differentiation at a proliferative DN stage. Thus, one can postulate that LMO2 exerts a proliferative effect on developing T-cells in thymic regions with high levels of NOTCH signaling, potentially providing a setting for the development of secondary leukemogenic events. NOTCH mutations are common in human T-ALL and can therefore allow for LMO2 overexpressing cells to become independent of the stromal niche. Taken together, our results suggest cooperation between LMO2 overexpression and NOTCH signaling in human T-cell leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 174 (2) ◽  
pp. 351-362 ◽  
Author(s):  
Y Obata ◽  
O Taguchi ◽  
Y Matsudaira ◽  
H Hasegawa ◽  
N Hamasima ◽  
...  

During derivation of transgenic mouse strains with various TL and TL/H-2 chimeric genes, one strain, Tg.Tlaa-3-1, introduced with a TL gene (Tlaa-3), was found to have an abnormal thymic T cell population and to develop a high incidence of T cell lymphomas. To investigate the etiology of the thymic abnormalities and of the lymphomas, the development of lymphoid organs in transgenic mice was studied. The thymus of these mice goes through three unusual successive events: perturbation of thymic development during embryogenesis, disappearance of thymocytes between day 14 and day 21 after birth, and subsequent proliferation of large blast-like cells. These events are associated with the abolishment of T cell receptor (TCR) alpha beta lineage of the T cell differentiation, leading to preponderance of cells belonging to the TCR gamma delta L3T4-Lyt-2- double negative (DN) lineage. Bone marrow transplantation and thymic graft experiments demonstrate that the abnormality resides in the bone marrow stem cells rather than in the thymic environment. The expression of TL antigen in the transgenic mice is greatly increased and TL is expressed in a wide range of T cells, including normally TL- DN cells and L3T4+ Lyt-2- and L3T4-Lyt-2+ single positive cells. These quantitative and qualitative abnormalities in TL expression most likely cause the abnormal T cell differentiation. The gamma delta DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, as T cell function is defective in antibody production to sheep red blood cells, in mixed lymphocyte culture reaction to allogenic spleen cells and also in stimulation with concanavalin A. These results indicate that the gamma delta cells are incapable of participating in these reactions. Molecular and serological analysis of T cell lymphomas reveal that they belong to the gamma delta lineage, suggesting that the gamma delta DN cells in this strain are susceptible to leukemic transformation. Based on cell surface phenotype and TCR expression of the DN thymocytes and T cell lymphomas, a map of the sequential steps involved in the differentiation of gamma delta DN cells is proposed.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qi-Rong Xu ◽  
Jian Tang ◽  
Hong-Ying Liao ◽  
Ben-Tong Yu ◽  
Xiang-Yuan He ◽  
...  

Abstract Background Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been implicated in the progression of esophageal cancer (EC). However, the specific mechanism of the involvement of MEG3 in EC development in relation to the regulation of immune escape remains uncertain. Thus, the aim of the current study was to investigate the effect of MEG3 on EC via microRNA-149-3p (miR-149-3p). Methods Gain- and loss-of-function experiments were initially performed in EC cells in addition to the establishment of a 4-nitroquinoline 1-oxide-induced EC mouse model aimed at evaluating the respective roles of forkhead box P3 (FOXP3), MEG3, miR-149-3p, mouse double minute 2 homolog (MDM2) and p53 in T cell differentiation and immune escape observed in EC. Results EC tissues were found to exhibit upregulated FOXP3 and MDM2 while MEG3, p53 and miR-149-3p were all downregulated. FOXP3 was confirmed to be a target gene of miR-149-3p with our data suggesting it reduced p53 ubiquitination and degradation by means of inhibiting MDM2. P53 was enriched in the promoter of miR-149-3p to upregulate miR-149-3p. The overexpression of MEG3, p53 or miR-149-3p or silencing FOXP3 was associated with a decline in CD25+FOXP3+CD4+ T cells, IL-10+CD4+ T cells and IL-4+CD4+ T cells in spleen tissues, IL-4, and IL-10 levels as well as C-myc, N-myc and Ki-67 expression in EC mice. Conclusion Collectively, MEG3 decreased FOXP3 expression and resulted in repressed regulatory T cell differentiation and immune escape in EC mice by upregulating miR-149-3p via MDM2-mediated p53.


Leukemia ◽  
2021 ◽  
Author(s):  
Emilie Coppin ◽  
Bala Sai Sundarasetty ◽  
Susann Rahmig ◽  
Jonas Blume ◽  
Nikita A. Verheyden ◽  
...  

AbstractHumanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T-cell differentiation remains inefficient. We generated mice expressing human interleukin-7 (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements. After transfer of human cord blood-derived hematopoietic stem and progenitor cells, transgenic mice on the NSGW41 background, termed NSGW41hIL7, showed elevated and prolonged human cellularity in the thymus while maintaining physiological ratios of thymocyte subsets. As a consequence, numbers of functional human T cells in the periphery were increased without evidence for pathological lymphoproliferation or aberrant expansion of effector or memory-like T cells. We conclude that the novel NSGW41hIL7 strain represents an optimized mouse model for humanization to better understand human T-cell differentiation in vivo and to generate a human immune system with a better approximation of human lymphocyte ratios.


2001 ◽  
Vol 166 (10) ◽  
pp. 5925-5934 ◽  
Author(s):  
Frank M. Raaphorst ◽  
Arie P. Otte ◽  
Folkert J. van Kemenade ◽  
Tjasso Blokzijl ◽  
Elly Fieret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document