scholarly journals Vanillin enones as selective inhibitors of the cancer associated carbonic anhydrase isoforms IX and XII. The out of the active site pocket for the design of selective inhibitors?

2021 ◽  
Vol 36 (1) ◽  
pp. 2118-2127
Author(s):  
Leonardo E. Riafrecha ◽  
Macarena S. Le Pors ◽  
Martín J. Lavecchia ◽  
Silvia Bua ◽  
Claudiu T. Supuran ◽  
...  
2000 ◽  
pp. 221-240 ◽  
Author(s):  
Jennifer A. Hunt ◽  
Charles A. Lesburg ◽  
David W. Christianson ◽  
Richard B. Thompson ◽  
Carol A. Fierke

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2418
Author(s):  
Zuo-Peng Zhang ◽  
Ze-Fa Yin ◽  
Jia-Yue Li ◽  
Zhi-Peng Wang ◽  
Qian-Jie Wu ◽  
...  

To find novel human carbonic anhydrase (hCA) inhibitors, we synthesized thirteen compounds by combining thiazolidinone with benzenesulfonamide. The result of the X-ray single-crystal diffraction experiment confirmed the configuration of this class of compounds. The enzyme inhibition assays against hCA II and IX showed desirable potency profiles, as effective as the positive controls. The docking studies revealed that compounds (2) and (7) efficiently bound in the active site cavity of hCA IX by forming sufficient interactions with active site residues. The fragment of thiazolidinone played an important role in the binding of the molecules to the active site.


IUCrJ ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 985-994 ◽  
Author(s):  
Jin Kyun Kim ◽  
Cheol Lee ◽  
Seon Woo Lim ◽  
Jacob T. Andring ◽  
Aniruddha Adhikari ◽  
...  

Enzymes are catalysts of biological processes. Significant insight into their catalytic mechanisms has been obtained by relating site-directed mutagenesis studies to kinetic activity assays. However, revealing the detailed relationship between structural modifications and functional changes remains challenging owing to the lack of information on reaction intermediates and of a systematic way of connecting them to the measured kinetic parameters. Here, a systematic approach to investigate the effect of an active-site-residue mutation on a model enzyme, human carbonic anhydrase II (CA II), is described. Firstly, structural analysis is performed on the crystallographic intermediate states of native CA II and its V143I variant. The structural comparison shows that the binding affinities and configurations of the substrate (CO2) and product (HCO3 −) are altered in the V143I variant and the water network in the water-replenishment pathway is restructured, while the proton-transfer pathway remains mostly unaffected. This structural information is then used to estimate the modifications of the reaction rate constants and the corresponding free-energy profiles of CA II catalysis. Finally, the obtained results are used to reveal the effect of the V143I mutation on the measured kinetic parameters (k cat and k cat/K m) at the atomic level. It is believed that the systematic approach outlined in this study may be used as a template to unravel the structure–function relationships of many other biologically important enzymes.


Biomimetics ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 66
Author(s):  
Park ◽  
Lee

Zinc complexes were synthesized as catalysts that mimic the ability of carbonic anhydrase (CA) for the CO2 hydration reaction (H2O + CO2 → H+ + HCO3-). For these complexes, a tris(2-pyridylmethyl)amine (TPA) ligand mimicking only the active site, and a 6-((bis(pyridin-2-ylmethyl)amino)methyl)pyridin-2-ol (TPA-OH) ligand mimicking the hydrogen-bonding network of the secondary coordination sphere of CA were used. Potentiometric pH titration was used to determine the deprotonation ability of the Zn complexes, and their pKa values were found to be 8.0 and 6.8, respectively. Stopped-flow spectrophotometry was used to confirm the CO2 hydration rate. The rate constants were measured to be 648.4 and 730.6 M-1s-1, respectively. The low pKa value was attributed to the hydrogen-bonding network of the secondary coordination sphere of the catalyst that mimics the behavior of CA, and this was found to increase the CO2 hydration rate of the catalyst.


Sign in / Sign up

Export Citation Format

Share Document