scholarly journals Validity of inertial measurement units for tracking human motion: a systematic review

2021 ◽  
pp. 1-14
Author(s):  
John Ghattas ◽  
Danielle N. Jarvis
Author(s):  
Ryan S. McGinnis ◽  
Jessandra Hough ◽  
N. C. Perkins

Newly developed miniature wireless inertial measurement units (IMUs) hold great promise for measuring and analyzing multibody system dynamics. This relatively inexpensive technology enables non-invasive motion tracking in broad applications, including human motion analysis. The second part of this two-part paper advances the use of an array of IMUs to estimate the joint reactions (forces and moments) in multibody systems via inverse dynamic modeling. In particular, this paper reports a benchmark experiment on a double-pendulum that reveals the accuracy of IMU-informed estimates of joint reactions. The estimated reactions are compared to those measured by high precision miniature (6 dof) load cells. Results from ten trials demonstrate that IMU-informed estimates of the three dimensional reaction forces remain within 5.0% RMS of the load cell measurements and with correlation coefficients greater than 0.95 on average. Similarly, the IMU-informed estimates of the three dimensional reaction moments remain within 5.9% RMS of the load cell measurements and with correlation coefficients greater than 0.88 on average. The sensitivity of these estimates to mass center location is discussed. Looking ahead, this benchmarking study supports the promising and broad use of this technology for estimating joint reactions in human motion applications.


Author(s):  
Jessandra Hough ◽  
Ryan S. McGinnis ◽  
N. C. Perkins

The energetics of human motion has been intensely studied using experimental and theoretical methods. Knowing the kinetic energy of the human body, and its decomposition into the kinetic energies of the major body segments, has tremendous value in applications ranging from physical therapy, athlete training, soldier performance, worker health and safety, among other uses. Significant challenges thwart our ability to measure segmental kinetic energy in real (non-laboratory) environments such as in the home or workplace, or on the playing/training field. The aim of this research is to address these challenges by advancing the use of an array of miniaturized body-worn inertial measurement units (IMUs) for estimating segmental kinetic energy. As a step towards this goal, this study reports a benchmark experiment that demonstrates the accuracy of IMU-derived estimates of segmental kinetic energy. The study is conducted on a well-characterized mechanical system, a double pendulum that also serves as an apt model for the lower or upper extremities. A two-node IMU array is used to measure the kinematics of each segment as input to the segmental kinetic energy computations. The segments are also instrumented with two high-precision optical encoders that provide the truth data for kinetic energy. The segmental kinetic energies estimated using the IMU array remain within 3.5% and 3.9% of the kinetic energies measured by the optical encoders for the top and bottom segments, respectively, for the freely decaying pendulum oscillations considered. These promising results support the future development of body-worn IMU arrays for real-time estimates of segmental kinetic energy for health, sports and military applications.


2015 ◽  
Vol 811 ◽  
pp. 353-358
Author(s):  
Gheorghe Daniel Voinea ◽  
Gheorghe Mogan

Monitoring human motion with magnetic and inertial measurement units is a complex task and there are many factors that must be taken into consideration. In this work, a wearable system for monitoring scoliosis using three inertial measurement units (IMUs) is introduced. The proposed solution can be used indoor and is focused on using the roll angle for measuring lateral movement of the spine, which characterizes the scoliosis spinal disorder.


mHealth ◽  
2021 ◽  
Vol 0 ◽  
pp. 0-0
Author(s):  
Ralph Jasper Mobbs ◽  
Jordan Perring ◽  
Suresh Mahendra Raj ◽  
Monish Maharaj ◽  
Nicole Kah Mun Yoong ◽  
...  

2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document