Development of a Wearable Scoliosis Monitoring System Using Inertial Sensors

2015 ◽  
Vol 811 ◽  
pp. 353-358
Author(s):  
Gheorghe Daniel Voinea ◽  
Gheorghe Mogan

Monitoring human motion with magnetic and inertial measurement units is a complex task and there are many factors that must be taken into consideration. In this work, a wearable system for monitoring scoliosis using three inertial measurement units (IMUs) is introduced. The proposed solution can be used indoor and is focused on using the roll angle for measuring lateral movement of the spine, which characterizes the scoliosis spinal disorder.

Author(s):  
Ryan S. McGinnis ◽  
Jessandra Hough ◽  
N. C. Perkins

Newly developed miniature wireless inertial measurement units (IMUs) hold great promise for measuring and analyzing multibody system dynamics. This relatively inexpensive technology enables non-invasive motion tracking in broad applications, including human motion analysis. The second part of this two-part paper advances the use of an array of IMUs to estimate the joint reactions (forces and moments) in multibody systems via inverse dynamic modeling. In particular, this paper reports a benchmark experiment on a double-pendulum that reveals the accuracy of IMU-informed estimates of joint reactions. The estimated reactions are compared to those measured by high precision miniature (6 dof) load cells. Results from ten trials demonstrate that IMU-informed estimates of the three dimensional reaction forces remain within 5.0% RMS of the load cell measurements and with correlation coefficients greater than 0.95 on average. Similarly, the IMU-informed estimates of the three dimensional reaction moments remain within 5.9% RMS of the load cell measurements and with correlation coefficients greater than 0.88 on average. The sensitivity of these estimates to mass center location is discussed. Looking ahead, this benchmarking study supports the promising and broad use of this technology for estimating joint reactions in human motion applications.


Author(s):  
Elisa Digo ◽  
Giuseppina Pierro ◽  
Stefano Pastorelli ◽  
Laura Gastaldi

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt–twist method was adopted to evaluate flexion–extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1885 ◽  
Author(s):  
Isabelle Poitras ◽  
Mathieu Bielmann ◽  
Alexandre Campeau-Lecours ◽  
Catherine Mercier ◽  
Laurent J. Bouyer ◽  
...  

Background: Workplace adaptation is the preferred method of intervention to diminish risk factors associated with the development of work-related shoulder disorders. However, the majority of the workplace assessments performed are subjective (e.g., questionnaires). Quantitative assessments are required to support workplace adaptations. The aims of this study are to assess the concurrent validity of inertial measurement units (IMUs; MVN, Xsens) in comparison to a motion capture system (Vicon) during lifting tasks, and establish the discriminative validity of a wireless electromyography (EMG) system for the evaluation of muscle activity. Methods: Sixteen participants performed 12 simple tasks (shoulder flexion, abduction, scaption) and 16 complex lifting tasks (lifting crates of different weights at different heights). A Delsys Trigno EMG system was used to record anterior and middle deltoids’ EMG activity, while the Xsens and Vicon simultaneously recorded shoulder kinematics. Results: For IMUs, correlation coefficients were high (simple task: >0.968; complex task: >0.84) and RMSEs were low (simple task: <6.72°; complex task: <11.5°). For EMG, a significant effect of weight, height and a weight x height interaction (anterior: p < 0.001; middle: p < 0.03) were observed for RMS EMG activity. Conclusions: These results suggest that wireless EMG and IMUs are valid units that can be used to measure physical demand in workplace assessments.


2016 ◽  
Vol 2 (1) ◽  
pp. 715-718 ◽  
Author(s):  
David Graurock ◽  
Thomas Schauer ◽  
Thomas Seel

AbstractInertial sensor networks enable realtime gait analysis for a multitude of applications. The usability of inertial measurement units (IMUs), however, is limited by several restrictions, e.g. a fixed and known sensor placement. To enhance the usability of inertial sensor networks in every-day live, we propose a method that automatically determines which sensor is attached to which segment of the lower limbs. The presented method exhibits a low computational workload, and it uses only the raw IMU data of 3 s of walking. Analyzing data from over 500 trials with healthy subjects and Parkinson’s patients yields a correct-pairing success rate of 99.8% after 3 s and 100% after 5 s.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550025 ◽  
Author(s):  
Mehdi Benallegue ◽  
Florent Lamiraux

Most robots are today controlled as being entirely rigid. But often, as for HRP-2 robot, there are flexible parts, intended for example to absorb impacts. The deformation of this flexibility modifies the orientation of the robot and endangers balance. Nevertheless, robots have usually inertial sensors inertial measurement units (IMUs) to reconstruct their orientation based on gravity and inertial effects. Moreover, humanoids have usually to ensure a firm contact with the ground, which provides reliable information on surrounding environment. We show in this study how important it is to take into account these information to improve IMU-based position/orientation reconstruction. We use an extended Kalman filter to rebuild the deformation, making the fusion between IMU and contact information, and without making any assumption on the dynamics of the flexibility. We show how, with this simple setting, we are able to compensate for perturbations and to stabilize the end-effector's position/orientation in the world reference frame. We show also that this estimation is reliable enough to enable a closed-loop stabilization of the flexibility and control of the center of mass (CoM) position with the simplest possible model.


Author(s):  
Jessandra Hough ◽  
Ryan S. McGinnis ◽  
N. C. Perkins

The energetics of human motion has been intensely studied using experimental and theoretical methods. Knowing the kinetic energy of the human body, and its decomposition into the kinetic energies of the major body segments, has tremendous value in applications ranging from physical therapy, athlete training, soldier performance, worker health and safety, among other uses. Significant challenges thwart our ability to measure segmental kinetic energy in real (non-laboratory) environments such as in the home or workplace, or on the playing/training field. The aim of this research is to address these challenges by advancing the use of an array of miniaturized body-worn inertial measurement units (IMUs) for estimating segmental kinetic energy. As a step towards this goal, this study reports a benchmark experiment that demonstrates the accuracy of IMU-derived estimates of segmental kinetic energy. The study is conducted on a well-characterized mechanical system, a double pendulum that also serves as an apt model for the lower or upper extremities. A two-node IMU array is used to measure the kinematics of each segment as input to the segmental kinetic energy computations. The segments are also instrumented with two high-precision optical encoders that provide the truth data for kinetic energy. The segmental kinetic energies estimated using the IMU array remain within 3.5% and 3.9% of the kinetic energies measured by the optical encoders for the top and bottom segments, respectively, for the freely decaying pendulum oscillations considered. These promising results support the future development of body-worn IMU arrays for real-time estimates of segmental kinetic energy for health, sports and military applications.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5990
Author(s):  
Isaia Andrenacci ◽  
Riccardo Boccaccini ◽  
Alice Bolzoni ◽  
Giulio Colavolpe ◽  
Cosimo Costantino ◽  
...  

Gait and jump anomalies are often used as indicators to identify the presence and state of disorders that involve motor symptoms. Physical tests are often performed in specialized laboratories, which offer reliable and accurate results, but require long and costly analyses performed by specialized personnel. The use of inertial sensors for gait and jump evaluation offers an easy-to-use low-cost alternative, potentially applicable by the patients themselves at home. In this paper, we compared three inertial measurement units that are available on the market by means of well-known standardized tests for the evaluation of gait and jump behavior. The aim of the study was to highlight the strengths and weaknesses of each of the tested sensors, considered in different tests, by comparing data collected on two healthy subjects. Data were processed to identify the phases of the movement and the possible inaccuracies of each sensor. The analysis showed that some of the considered inertial units could be reliably used to identify the gait and jump phases and could be employed to detect anomalies, potentially suggesting the presence of disorders.


Sign in / Sign up

Export Citation Format

Share Document