Author(s):  
Elisa Digo ◽  
Giuseppina Pierro ◽  
Stefano Pastorelli ◽  
Laura Gastaldi

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt–twist method was adopted to evaluate flexion–extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


2016 ◽  
Vol 2 (1) ◽  
pp. 715-718 ◽  
Author(s):  
David Graurock ◽  
Thomas Schauer ◽  
Thomas Seel

AbstractInertial sensor networks enable realtime gait analysis for a multitude of applications. The usability of inertial measurement units (IMUs), however, is limited by several restrictions, e.g. a fixed and known sensor placement. To enhance the usability of inertial sensor networks in every-day live, we propose a method that automatically determines which sensor is attached to which segment of the lower limbs. The presented method exhibits a low computational workload, and it uses only the raw IMU data of 3 s of walking. Analyzing data from over 500 trials with healthy subjects and Parkinson’s patients yields a correct-pairing success rate of 99.8% after 3 s and 100% after 5 s.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550025 ◽  
Author(s):  
Mehdi Benallegue ◽  
Florent Lamiraux

Most robots are today controlled as being entirely rigid. But often, as for HRP-2 robot, there are flexible parts, intended for example to absorb impacts. The deformation of this flexibility modifies the orientation of the robot and endangers balance. Nevertheless, robots have usually inertial sensors inertial measurement units (IMUs) to reconstruct their orientation based on gravity and inertial effects. Moreover, humanoids have usually to ensure a firm contact with the ground, which provides reliable information on surrounding environment. We show in this study how important it is to take into account these information to improve IMU-based position/orientation reconstruction. We use an extended Kalman filter to rebuild the deformation, making the fusion between IMU and contact information, and without making any assumption on the dynamics of the flexibility. We show how, with this simple setting, we are able to compensate for perturbations and to stabilize the end-effector's position/orientation in the world reference frame. We show also that this estimation is reliable enough to enable a closed-loop stabilization of the flexibility and control of the center of mass (CoM) position with the simplest possible model.


2015 ◽  
Vol 811 ◽  
pp. 353-358
Author(s):  
Gheorghe Daniel Voinea ◽  
Gheorghe Mogan

Monitoring human motion with magnetic and inertial measurement units is a complex task and there are many factors that must be taken into consideration. In this work, a wearable system for monitoring scoliosis using three inertial measurement units (IMUs) is introduced. The proposed solution can be used indoor and is focused on using the roll angle for measuring lateral movement of the spine, which characterizes the scoliosis spinal disorder.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5990
Author(s):  
Isaia Andrenacci ◽  
Riccardo Boccaccini ◽  
Alice Bolzoni ◽  
Giulio Colavolpe ◽  
Cosimo Costantino ◽  
...  

Gait and jump anomalies are often used as indicators to identify the presence and state of disorders that involve motor symptoms. Physical tests are often performed in specialized laboratories, which offer reliable and accurate results, but require long and costly analyses performed by specialized personnel. The use of inertial sensors for gait and jump evaluation offers an easy-to-use low-cost alternative, potentially applicable by the patients themselves at home. In this paper, we compared three inertial measurement units that are available on the market by means of well-known standardized tests for the evaluation of gait and jump behavior. The aim of the study was to highlight the strengths and weaknesses of each of the tested sensors, considered in different tests, by comparing data collected on two healthy subjects. Data were processed to identify the phases of the movement and the possible inaccuracies of each sensor. The analysis showed that some of the considered inertial units could be reliably used to identify the gait and jump phases and could be employed to detect anomalies, potentially suggesting the presence of disorders.


Sensors ◽  
2013 ◽  
Vol 13 (9) ◽  
pp. 12192-12217 ◽  
Author(s):  
Xiaoji Niu ◽  
You Li ◽  
Hongping Zhang ◽  
Qingjiang Wang ◽  
Yalong Ban

Author(s):  
Jorge Lobo ◽  
Pedro Trindade

The InerTouchHand System shows the usage of an instrumented glove-like device for HMI-Human Machine Interaction applications. We explored the use of distributed inertial sensors and vibro-tactile stimulators on the hand. Distributed Inertial Measurement Units (IMUs) can be used to infer structure and reconstruct 6D pose of nodes, as well as relative motion. Our system uses MEMS IMUs on each fingertip for providing relative angular pose by using gravity as a vertical reference for acceleration measurements. Although not always fully observable it can be complemented by the IMUsâ?? gyro rotation and magnetometer measurements. When combined with vibro-tactile stimulators a hand worn device or glove can provide spatial aware feedback. At exp.atâ??13 (2nd Experiment@ International Conference) an interactive demo presented InerTouchHand (iTH), the hand device for gesture recognition and HMI with touch feedback.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document