The role of the substrate surface layer in the process of epitaxy part II. substrate structure and formation of epitaxial films

1970 ◽  
Vol 22 (176) ◽  
pp. 281-289 ◽  
Author(s):  
C. A. O. Henning ◽  
J. S. Vermaak
Author(s):  
В. Бутенко ◽  
V. Butenko

The assessment indices of surface layer effective state in machinery subjected to different ways of finishing are considered. The role of the dislocation restructurization process in the formation of operation characteristics of surface layer material quality and prediction of its working capacity is shown. A generalized quality index of multi-component functional layers formed on operation surfaces of machinery is described.


2021 ◽  
pp. 103513
Author(s):  
Dmitrii A. Kremenchutskii ◽  
Gennady F. Batrakov ◽  
Illarion I. Dovhyi ◽  
Yury A. Sapozhnikov

1984 ◽  
Vol 37 ◽  
Author(s):  
N. Otsuka ◽  
L. A. Kolodziejski ◽  
R. L. Gunshor ◽  
S. Datta ◽  
R. N. Bicknell ◽  
...  

AbstractCdTe films have been grown on GaAs substrates with two types of interfaces - one with the epitaxial relation (111)CdTe║ (100)GaAs and the other with (100)CdTe║ (100)GaAs,. High resolution electron microscope observation of the two types of interfaces was carried out in order to determine the role of the substrate surface microstructure in determining the epitaxy. The interface of the former type shows a direct contact between the CdTe and GaAs crystals, while the interface of the latter type has a very thin oxide layer (∼10 Å in thickness) between the two crystals. These observations suggest that details of the substrate preheating cycle prior to film growth is the principle factor in determining which epitaxial relation occurs in this system. The relation between interfacial structures and the origin of the two epitaxial relations is discussed.


2003 ◽  
Vol 763 ◽  
Author(s):  
U. Rau ◽  
M. Turcu

AbstractNumerical simulations are used to investigate the role of the Cu-poor surface defect layer on Cu(In, Ga)Se2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In, Ga)Se2 heterojunction solar cells. We model the surface layer either as a material which is n-type doped, or as a material which is type-inverted due to Fermi-level pinning by donor-like defects at the interface with CdS. We further assume a band gap widening of this layer with respect to the Cu(In, Ga)Se2 bulk. This feature turns out to represent the key quality of the Cu(In, Ga)Se2 surface as it prevents recombination at the absorber/CdS buffer interface. Whether the type inversion results from n-type doping or from Fermi-level pinning is only of minor importance as long as the surface layer does not imply a too large number of excess defects in its bulk or at its interface with the normal absorber. With increasing number of those defects an n-type layer proofs to be less sensitive to material deterioration when compared to the type-inversion by Fermi-level pinning. For wide gap chalcopyrite solar cells the internal valence band offset between the surface layer and the chalcopyrite appears equally vital for the device efficiency. However, the unfavorable band-offsets of the ZnO/CdS/Cu(In, Ga)Se2 heterojunction limit the device efficiency because of the deterioration of the fill factor.


2016 ◽  
Vol 18 (30) ◽  
pp. 20627-20634 ◽  
Author(s):  
Jingya Dai ◽  
Qitang Fan ◽  
Tao Wang ◽  
Julian Kuttner ◽  
Gerhard Hilt ◽  
...  

Depending on the substrate temperature, the deposition of DMTP molecules on a Cu(110) surface can result in the formation of either organometallic or oligophenylene zigzag chains.


2001 ◽  
Vol 385 (1-2) ◽  
pp. 132-141 ◽  
Author(s):  
Xiangyang Jiang ◽  
Yuepeng Wan ◽  
Herbert Herman ◽  
Sanjay Sampath

Sign in / Sign up

Export Citation Format

Share Document