Site-Directed Mutagenesis of Asp313, Glu315, and Asp391 Residues in Chitinase of Aeromonas Caviae

IUBMB Life ◽  
1999 ◽  
Vol 48 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Fu-Pang Lin ◽  
Hsing-Chen Chen ◽  
Chung-Saint Lin
2003 ◽  
Vol 69 (8) ◽  
pp. 4830-4836 ◽  
Author(s):  
Takeharu Tsuge ◽  
Tamao Hisano ◽  
Seiichi Taguchi ◽  
Yoshiharu Doi

ABSTRACT Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJAc) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid β-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJAc by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJAc revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C8) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C12) was examined by using the mutated PhaJAc as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1 Ps). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C8) and 3-hydroxydecanoate (C10) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.


IUBMB Life ◽  
1999 ◽  
Vol 48 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Fu-Pang Lin ◽  
Hsing-Chen Chen ◽  
Chung-Saint Lin

Author(s):  
Ken Harada ◽  
Shingo Kobayashi ◽  
Kanji Oshima ◽  
Shinichi Yoshida ◽  
Takeharu Tsuge ◽  
...  

Polyhydroxyalkanoate (PHA) synthase is an enzyme that polymerizes the acyl group of hydroxyacyl-coenzyme A (CoA) substrates. Aeromonas caviae PHA synthase (PhaCAc) is an important biocatalyst for the synthesis of a useful PHA copolymer, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. Previously, a PhaCAc mutant with double mutations in asparagine 149 (replaced by serine [N149S]) and aspartate 171 (replaced by glycine [D171G]) was generated to synthesize a 3HHx-rich P(3HB-co-3HHx) and was named PhaCAc NSDG. In this study, to further increase the 3HHx fraction in biosynthesized PHA, PhaCAc was engineered based on the three-dimensional structural information of PHA synthases. First, a homology model of PhaCAc was built to target the residues for site-directed mutagenesis. Three residues, namely tyrosine 318 (Y318), serine 389 (S389), and leucine 436 (L436), were predicted to be involved in substrate recognition by PhaCAc. These PhaCAc NSDG residues were replaced with other amino acids, and the resulting triple mutants were expressed in the engineered strain of Ralstonia eutropha for application in PHA biosynthesis from palm kernel oil. The S389T mutation allowed the synthesis of P(3HB-co-3HHx) with an increased 3HHx fraction without a significant reduction in PHA yield. Thus, a new workhorse enzyme was successfully engineered for the biosynthesis of a higher 3HHx-fraction polymer.


2005 ◽  
Vol 71 (11) ◽  
pp. 7559-7561 ◽  
Author(s):  
Qiang Li ◽  
Fengping Wang ◽  
Ying Zhou ◽  
Xiang Xiao

ABSTRACT Chitinase Chi1 of Aeromonas caviae CB101 possesses chitin binding sites at both its N and C termini. Four putative exposed residues aligned in a line on the surface of the N-terminal domains of Chi1 were found to contribute to the enzyme-chitin binding and hydrolysis via site-directed mutagenesis. Also, it was found that Chi1 requires the cooperation of the N- and C-terminal domains to bind fully with crystalline and colloidal chitin.


2013 ◽  
Vol 37 (3) ◽  
pp. 330
Author(s):  
Yanan WANG ◽  
Xudong LIU ◽  
Linlin MU ◽  
Zhipeng LIU ◽  
Chunmei LI ◽  
...  

Author(s):  
UMA SELVARAJ ◽  
THIRUMALAI MUTHUKUMARESAN ◽  
GAYATHRI VIJAYENDRAN ◽  
SENTHIL KUMAR DEVAN ◽  
VENU BABU P ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document