Distribution of Potentially Toxic Elements in Sediments of an Industrialized Coastal Zone of the Northern Aegean Sea

2010 ◽  
Vol 11 (3) ◽  
pp. 282-292 ◽  
Author(s):  
Georgios Papastergios ◽  
Anestis Filippidis ◽  
Jose-Luis Fernandez-Turiel ◽  
Domingo Gimeno ◽  
Constadinos Sikalidis
2021 ◽  
Author(s):  
Ilia Lobzenko ◽  
Dina Nevidomskaya ◽  
Elizaveta Konstantinova ◽  
Tatiana Minkina ◽  
Tatiana Bauer ◽  
...  

<p>Large rivers and their deltaic parts and adjacent coastal zones are subjected to strong anthropogenic influence and are often considered as hotspots of environmental pollution. The Don River basin is a highly urbanized area with developed agriculture and industry which negatively affect water quality, aquatic ecosystems and soils. The main objectives of the proposed research were to determine the levels of potentially toxic elements (PHEs) in soils of various aquatic landscapes of the study area, as well as to reveal the relationships between the content of exchangeable PTEs and the physical-chemical properties of floodplain soils.</p><p>Depending on the soil-landscape and hydrological conditions and taking into account the intensity of anthropogenic influence, the following zones were identified: the lower Don floodplain from the Tsimlyansk Reservoir to the source of the Mertvy Donets River, Don Delta, the coastal zone of the Taganrog Bay, the mouths of small rivers flowing into the bay, and Taganrog city, an industrial port center on the northern coast of the bay.</p><p>The floodplain and coastal landscapes of the study area are dominated by Fluvisols. Solonchaks, Arenosols and Haplic Chernozems which are background soils of the region are less common. Soil samples were collected in summer 2020 from the surface soil horizon (0–20 cm deep). The particle size analysis was conducted using the pipette method; the total organic carbon content in the soils was determined using the dichromate oxidation; the pH was measured by potentiometry in the supernatant suspension of soil and water in a ratio of 1:2.5. The total concentrations of Cr, Mn, Ni, Cu, Zn, Cd, and Pb were determined by X-ray fluorescence analysis using a Spectroscan MAX-GV spectrometer (Spectron, Russia), and the content of exchangeable forms extracted from the soil by NH4Ac buffer solution with pH 4.8 and soil/solution ratio of 1:10 for 18 h was determined by atomic absorption spectrophotometry.</p><p>The obtained results showed that soils of the Lower Don and Taganrog Bay coastal zone are rather contrasted in terms of properties and metal contents, which indicates the variability of landscapes, natural and anthropogenic processes in the studied systems. High CV values for Pb, Zn, Cd and Cr indirectly indicate strong anthropogenic influence on these environments. The results of PCA analysis showed that there are two association of metals in terms of geochemical behaviour and sources. The first one included Cr-Zn-Pb-Cd, the elements of anthropogenic origin, the second Mn, Ni, and Cu, which are probably of mixed origin. The obtained results showed that the coastal zone is a diverse and complex system subjected to anthropogenic activities, which is pronounced in the enrichment of aquatic soils with a number of metals and higher proportions of exchangeable forms from different types of sources.</p><p>This work was funded by the Russian Science Foundation, grant no. 20-14-00317.</p>


Author(s):  
Shufeng She ◽  
Bifeng Hu ◽  
Xianglin Zhang ◽  
Shuai Shao ◽  
Yefeng Jiang ◽  
...  

Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1, 68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these elements, only Cd and Hg showed significant accumulation compared with their background values. The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and then showed a decreasing trend. The results obtained from this study will provide guidance for the prevention and control of soil pollution in the Yangtze River Delta.


2021 ◽  
pp. 112285
Author(s):  
Neus González ◽  
Eudald Correig ◽  
Isa Marmelo ◽  
António Marques ◽  
Rasmus la Cour ◽  
...  

Author(s):  
Zahra Biglari Quchan Atigh ◽  
Pourya Sardari ◽  
Ebrahim Moghiseh ◽  
Behnam Asgari Lajayer ◽  
Andrew S. Hursthouse

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 613
Author(s):  
Samantha Jiménez-Oyola ◽  
Kenny Escobar Segovia ◽  
María-Jesús García-Martínez ◽  
Marcelo Ortega ◽  
David Bolonio ◽  
...  

Anthropogenic activities performed in the Ecuadorian Amazon have released potentially toxic elements (PTEs) into the rivers, causing severe environmental pollution and increasing the risk of exposure to the residents of the surrounding areas. This study aims to carry out a human health risk assessment using deterministic and probabilistic methods to estimate the hazard index (HI) and total cancer risk (TCR) related to multi-pathway human exposure to PTEs in polluted rivers. Concentrations of Al, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in surface water and sediment samples from rivers on the Ecuadorian Amazon were considered to assess the potential adverse human health effects. As a result, deterministic and probabilistic estimations of cancer and non-cancer risk through exposure to surface waters and sediments were above the safety limit. A sensitivity analysis identified the concentration of PTEs and the exposure duration (ED) as the two most important variables for probabilistic health risk assessment. The highest risk for receptors was related to exposure to polluted sediments through incidental ingestion and dermal contact routes. According to the deterministic estimation, the human health risk through ingestion of water was above the threshold in specific locations. This study reveals the potential health risk to which the population is exposed. This information can be used as a baseline to develop public strategies to reduce anthropogenic pollution and exposure to PTEs in Ecuadorian Amazon rivers.


Sign in / Sign up

Export Citation Format

Share Document