Condition Monitoring and Fault Diagnosis of Induction Motor Using Support Vector Machine

2016 ◽  
Vol 44 (6) ◽  
pp. 683-692 ◽  
Author(s):  
Rakesh A. Patel ◽  
Bhavesh R. Bhalja
Author(s):  
T Praveenkumar ◽  
M Saimurugan ◽  
K I Ramachandran

Condition monitoring system monitors the system degradation and it identifies common failure modes. Several sensor signals are available for monitoring the changes in system components. Vibration signal is one of the most extensively used technique for monitoring rotating components as it identifies faults before the system fails. Early fault detection is the significant factor for condition monitoring, where Acoustic Emission ( AE ) sensor signals have been applied for early fault detection due to their high sensitivity and high frequency. In this paper, vibration and acoustic emission signals are acquired under various simulated gear and bearing fault conditions from the synchromesh gearbox. Then the statistical features are extracted from vibration and AE signals and then the prominent features are selected using J48 decision tree algorithm respectively. The best features from the vibration and AE signals are then fused using feature-level fusion strategy and it is classified using Support Vector Machine ( SVM ) and Proximal Support Vector Machine ( PSVM ) classifiers and it is compared with individual signals for fault diagnosis of the synchromesh gearbox. From the experiments, it is observed that the performance of the fault diagnosis system has been improved for the proposed feature level fusion technique compared to the performance of unfused vibration and AE feature sets.


Author(s):  
Purushottam Gangsar ◽  
Rajiv Tiwari

This paper demonstrates the development of a flexible fault diagnosis methodology that can detect up to ten different faults in the induction motor (IM), simultaneously. The major IM electrical faults, such as the broken rotor bar (BRB), phase unbalance (PUF), and stator winding fault (SWF), and mechanical faults, such as bearing fault (BF), unbalanced rotor (UR), bowed rotor (BR), and misaligned rotor (MR), are considered with different fault severities for the diagnosis. The experiments are conducted with three varying loads and seven different speeds, and the frequency domain vibration and current data are acquired at a relatively low sampling rate of 1 kHz. Several statistical features are extracted and then the best feature-set is selected using the wrapper model. Thereafter, a data classification tool based on the support vector machine (SVM) is used for the fault characterization. Initially, a multi-fault diagnosis is performed by training and testing the SVM at the same operating conditions (i.e., load and speed). The performance of the classifier is found to be very good at all IM operating conditions. The main focus of this study lies in overcoming the fault diagnosis, where the data are unavailable at required operating conditions. This is accomplished by employing interpolation and extrapolation strategies for different loads and speeds. The proposed methodology not only solves practical problem of unavailability of data at different operating conditions but also shows good performance and takes low computation time, which are vital requirements of an online intelligent condition monitoring system.


Sign in / Sign up

Export Citation Format

Share Document