Transition of the Degree Sequence in the Random Graph Model of Cooper, Frieze, and Vera

2013 ◽  
Vol 29 (3) ◽  
pp. 341-352 ◽  
Author(s):  
Thomas Vallier
Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


Author(s):  
Mark Newman

A discussion of the most fundamental of network models, the configuration model, which is a random graph model of a network with a specified degree sequence. Following a definition of the model a number of basic properties are derived, including the probability of an edge, the expected number of multiedges, the excess degree distribution, the friendship paradox, and the clustering coefficient. This is followed by derivations of some more advanced properties including the condition for the existence of a giant component, the size of the giant component, the average size of a small component, and the expected diameter. Generating function methods for network models are also introduced and used to perform some more advanced calculations, such as the calculation of the distribution of the number of second neighbors of a node and the complete distribution of sizes of small components. The chapter ends with a brief discussion of extensions of the configuration model to directed networks, bipartite networks, networks with degree correlations, networks with high clustering, and networks with community structure, among other possibilities.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


2021 ◽  
Vol 30 (4) ◽  
pp. 525-537
Author(s):  
András Faragó ◽  

Random graphs are frequently used models of real-life random networks. The classical Erdös–Rényi random graph model is very well explored and has numerous nontrivial properties. In particular, a good number of important graph parameters that are hard to compute in the deterministic case often become much easier in random graphs. However, a fundamental restriction in the Erdös–Rényi random graph is that the edges are required to be probabilistically independent. This is a severe restriction, which does not hold in most real-life networks. We consider more general random graphs in which the edges may be dependent. Specifically, two models are analyzed. The first one is called a p-robust random graph. It is defined by the requirement that each edge exist with probability at least p, no matter how we condition on the presence/absence of other edges. It is significantly more general than assuming independent edges existing with probability p, as exemplified via several special cases. The second model considers the case when the edges are positively correlated, which means that the edge probability is at least p for each edge, no matter how we condition on the presence of other edges (but absence is not considered). We prove some interesting, nontrivial properties about both models.


2020 ◽  
Vol 29 (6) ◽  
pp. 830-867 ◽  
Author(s):  
Shagnik Das ◽  
Andrew Treglown

AbstractGiven graphs H1, H2, a graph G is (H1, H2) -Ramsey if, for every colouring of the edges of G with red and blue, there is a red copy of H1 or a blue copy of H2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs. This is a random graph model introduced by Bohman, Frieze and Martin [8] in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali [30] in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3, Kt) -Ramsey (for t ≽ 3). They also raised the question of generalizing this result to pairs of graphs other than (K3, Kt). We make significant progress on this question, giving a precise solution in the case when H1 = Ks and H2 = Kt where s, t ≽ 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3, Kt) -Ramsey question. Moreover, we give bounds for the corresponding (K4, Kt) -Ramsey question; together with a construction of Powierski [37] this resolves the (K4, K4) -Ramsey problem.We also give a precise solution to the analogous question in the case when both H1 = Cs and H2 = Ct are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalization of the Krivelevich, Sudakov and Tetali [30] result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs, Kt) -Ramsey (for odd s ≽ 5 and t ≽ 4).To prove our results we combine a mixture of approaches, employing the container method, the regularity method as well as dependent random choice, and apply robust extensions of recent asymmetric random Ramsey results.


2019 ◽  
Vol 7 (1) ◽  
pp. 20-51 ◽  
Author(s):  
Philip Leifeld ◽  
Skyler J. Cranmer

AbstractThe temporal exponential random graph model (TERGM) and the stochastic actor-oriented model (SAOM, e.g., SIENA) are popular models for longitudinal network analysis. We compare these models theoretically, via simulation, and through a real-data example in order to assess their relative strengths and weaknesses. Though we do not aim to make a general claim about either being superior to the other across all specifications, we highlight several theoretical differences the analyst might consider and find that with some specifications, the two models behave very similarly, while each model out-predicts the other one the more the specific assumptions of the respective model are met.


Sign in / Sign up

Export Citation Format

Share Document