A generalization of the matrix M/G/l paradigm for Markov chains with a tree structure

1995 ◽  
Vol 11 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Tetsuya Takine ◽  
Bhaskar Sengupta ◽  
Raymond W. Yeung
1996 ◽  
Vol 28 (01) ◽  
pp. 114-165 ◽  
Author(s):  
H. R. Gail ◽  
S. L. Hantler ◽  
B. A. Taylor

When analyzing the equilibrium behavior of M/G/1 type Markov chains by transform methods, restrictive hypotheses are often made to avoid technical problems that arise in applying results from complex analysis and linear algebra. It is shown that such restrictive assumptions are unnecessary, and an analysis of these chains using generating functions is given under only the natural hypotheses that first moments (or second moments in the null recurrent case) exist. The key to the analysis is the identification of an important subspace of the space of bounded solutions of the system of homogeneous vector-valued Wiener–Hopf equations associated with the chain. In particular, the linear equations in the boundary probabilities obtained from the transform method are shown to correspond to a spectral basis of the shift operator on this subspace. Necessary and sufficient conditions under which the chain is ergodic, null recurrent or transient are derived in terms of properties of the matrix-valued generating functions determined by transitions of the Markov chain. In the transient case, the Martin exit boundary is identified and shown to be associated with certain eigenvalues and vectors of one of these generating functions. An equilibrium analysis of the class of G/M/1 type Markov chains by similar methods is also presented.


2010 ◽  
Vol 42 (1) ◽  
pp. 210-225 ◽  
Author(s):  
P. G. Taylor ◽  
B. Van Houdt

In 1990, Ramaswami proved that, given a Markov renewal process of M/G/1 type, it is possible to construct a Markov renewal process of GI/M/1 type such that the matrix transforms G(z, s) for the M/G/1-type process and R(z, s) for the GI/M/1-type process satisfy a duality relationship. In his 1996 PhD thesis, Bright used time reversal arguments to show that it is possible to define a different dual for positive-recurrent and transient processes of M/G/1 type and GI/M/1 type. Here we compare the properties of the Ramaswami and Bright dual processes and show that the Bright dual has desirable properties that can be exploited in the design of algorithms for the analysis of Markov chains of GI/M/1 type and M/G/1 type.


2001 ◽  
Vol 38 (2) ◽  
pp. 519-541 ◽  
Author(s):  
Qi-Ming He ◽  
Marcel F. Neuts

We study the convergence of certain matrix sequences that arise in quasi-birth-and-death (QBD) Markov chains and we identify their limits. In particular, we focus on a sequence of matrices whose elements are absorption probabilities into some boundary states of the QBD. We prove that, under certain technical conditions, that sequence converges. Its limit is either the minimal nonnegative solution G of the standard nonlinear matrix equation, or it is a stochastic solution that can be explicitly expressed in terms of G. Similar results are obtained relative to the standard matrix R that arises in the matrix-geometric solution of the QBD. We present numerical examples that clarify some of the technical issues of interest.


2017 ◽  
Vol 5 (1) ◽  
pp. 73-81
Author(s):  
Konstantin Fackeldey ◽  
Amir Niknejad ◽  
Marcus Weber

Abstract In order to fully characterize the state-transition behaviour of finite Markov chains one needs to provide the corresponding transition matrix P. In many applications such as molecular simulation and drug design, the entries of the transition matrix P are estimated by generating realizations of the Markov chain and determining the one-step conditional probability Pij for a transition from one state i to state j. This sampling can be computational very demanding. Therefore, it is a good idea to reduce the sampling effort. The main purpose of this paper is to design a sampling strategy, which provides a partial sampling of only a subset of the rows of such a matrix P. Our proposed approach fits very well to stochastic processes stemming from simulation of molecular systems or random walks on graphs and it is different from the matrix completion approaches which try to approximate the transition matrix by using a low-rank-assumption. It will be shown how Markov chains can be analyzed on the basis of a partial sampling. More precisely. First, we will estimate the stationary distribution from a partially given matrix P. Second, we will estimate the infinitesimal generator Q of P on the basis of this stationary distribution. Third, from the generator we will compute the leading invariant subspace, which should be identical to the leading invariant subspace of P. Forth, we will apply Robust Perron Cluster Analysis (PCCA+) in order to identify metastabilities using this subspace.


2003 ◽  
Vol 40 (4) ◽  
pp. 1087-1102 ◽  
Author(s):  
Qi-Ming He

In this paper, we study the classification of matrix GI/M/1-type Markov chains with a tree structure. We show that the Perron–Frobenius eigenvalue of a Jacobian matrix provides information for classifying these Markov chains. A fixed-point approach is utilized. A queueing application is presented to show the usefulness of the classification method developed in this paper.


Author(s):  
Beata Bylina ◽  
Jarosław Bylina

Influence of Preconditioning and Blocking on Accuracy in Solving Markovian ModelsThe article considers the effectiveness of various methods used to solve systems of linear equations (which emerge while modeling computer networks and systems with Markov chains) and the practical influence of the methods applied on accuracy. The paper considers some hybrids of both direct and iterative methods. Two varieties of the Gauss elimination will be considered as an example of direct methods: the LU factorization method and the WZ factorization method. The Gauss-Seidel iterative method will be discussed. The paper also shows preconditioning (with the use of incomplete Gauss elimination) and dividing the matrix into blocks where blocks are solved applying direct methods. The motivation for such hybrids is a very high condition number (which is bad) for coefficient matrices occuring in Markov chains and, thus, slow convergence of traditional iterative methods. Also, the blocking, preconditioning and merging of both are analysed. The paper presents the impact of linked methods on both the time and accuracy of finding vector probability. The results of an experiment are given for two groups of matrices: those derived from some very abstract Markovian models, and those from a general 2D Markov chain.


1965 ◽  
Vol 8 (3) ◽  
pp. 345-358 ◽  
Author(s):  
N. Pullman

The purpose of this paper is to present a geometric theorem which provides a proof of a fundamental theorem of finite Markov chains.The theorem, stated in matrix theoretic terms, concerns the asymptotic behaviour of the powers of an n by n stochastic matrix, that is, a matrix of non-negative entries each of whose row sums is 1. The matrix might arise from a repeated physical process which goes from one of n possible states to another at each iteration and whose probability of going to a state depends only on the state it is in at present and not on its more distant history.


1996 ◽  
Vol 28 (1) ◽  
pp. 114-165 ◽  
Author(s):  
H. R. Gail ◽  
S. L. Hantler ◽  
B. A. Taylor

When analyzing the equilibrium behavior of M/G/1 type Markov chains by transform methods, restrictive hypotheses are often made to avoid technical problems that arise in applying results from complex analysis and linear algebra. It is shown that such restrictive assumptions are unnecessary, and an analysis of these chains using generating functions is given under only the natural hypotheses that first moments (or second moments in the null recurrent case) exist. The key to the analysis is the identification of an important subspace of the space of bounded solutions of the system of homogeneous vector-valued Wiener–Hopf equations associated with the chain. In particular, the linear equations in the boundary probabilities obtained from the transform method are shown to correspond to a spectral basis of the shift operator on this subspace. Necessary and sufficient conditions under which the chain is ergodic, null recurrent or transient are derived in terms of properties of the matrix-valued generating functions determined by transitions of the Markov chain. In the transient case, the Martin exit boundary is identified and shown to be associated with certain eigenvalues and vectors of one of these generating functions. An equilibrium analysis of the class of G/M/1 type Markov chains by similar methods is also presented.


Sign in / Sign up

Export Citation Format

Share Document