A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates

2015 ◽  
Vol 23 (4) ◽  
pp. 423-431 ◽  
Author(s):  
Mohammed Bennoun ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi
2011 ◽  
Vol 32 (7) ◽  
pp. 925-942 ◽  
Author(s):  
L. Hadji ◽  
H. A. Atmane ◽  
A. Tounsi ◽  
I. Mechab ◽  
E. A. Adda Bedia

2011 ◽  
Vol 14 (1) ◽  
pp. 5-33 ◽  
Author(s):  
Mohamed Bourada ◽  
Abdelouahed Tounsi ◽  
Mohammed Sid Ahmed Houari ◽  
El Abbes Adda Bedia

2011 ◽  
Vol 34 (4) ◽  
pp. 315-334 ◽  
Author(s):  
Mohammed Sid Ahmed Houari ◽  
Samir Benyoucef ◽  
Ismail Mechab ◽  
Abdelouahed Tounsi ◽  
El Abbas Adda Bedia

2021 ◽  
Vol 111 (2) ◽  
pp. 49-65
Author(s):  
E.K. Njim ◽  
S.H. Bakhy ◽  
M. Al-Waily

Purpose: This paper develops a new analytical solution to conduct the free vibration analysis of porous functionally graded (FG) sandwich plates based on classical plate theory (CPT). The sandwich plate made of the FGM core consists of one porous metal that had not previously been taken into account in vibration analysis and two homogenous skins. Design/methodology/approach: The analytical formulations were generated based on the classical plate theory (CPT). According to the power law, the material properties of FG plates are expected to vary along the thickness direction of the constituents. Findings: The results show that the porosity parameter and the power gradient parameter significantly influence vibration characteristics. It is found that there is an acceptable error between the analytical and numerical solutions with a maximum discrepancy of 0.576 % at a slenderness ratio (a/h =100), while the maximum error percentage between the analytical and experimental results was found not exceeding 15%. Research limitations/implications: The accuracy of analytical solutions is verified by the adaptive finite elements method (FEM) with commercial ANSYS 2020 R2 software. Practical implications: Free vibration experiments on 3D-printed FGM plates bonded with two thin solid face sheets at the top and bottom surfaces were conducted. Originality/value: The novel sandwich plate consists of one porous polymer core and two homogenous skins which can be widely applied in various fields of aircraft structures, biomedical engineering, and defense technology. This paper presents an analytical and experimental study to investigate the free vibration problem of a functionally graded simply supported rectangular sandwich plate with porosities. The objective of the current work is to examine the effects of some key parameters, such as porous ratio, power-law index, and slenderness ratio, on the natural frequencies and damping characteristics.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3675 ◽  
Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Vu Van Tham

This paper presents a new four-variable refined plate theory for free vibration analysis of laminated piezoelectric functionally graded carbon nanotube-reinforced composite plates (PFG-CNTRC). The present theory includes a parabolic distribution of transverse shear strain through the thickness and satisfies zero traction boundary conditions at both free surfaces of the plates. Thus, no shear correction factor is required. The distribution of carbon nanotubes across the thickness of each FG-CNT layer can be functionally graded or uniformly distributed. Additionally, the electric potential in piezoelectric layers is assumed to be quadratically distributed across the thickness. Equations of motion for PFG-CNTRC rectangular plates are derived using both Maxwell’s equation and Hamilton’s principle. Using the Navier technique, natural frequencies of the simply supported hybrid plate with closed circuit and open circuit of electrical boundary conditions are calculated. New parametric studies regarding the effect of the volume fraction, the CNTs distribution, the number of layers, CNT fiber orientation and thickness of the piezoelectric layer on the free vibration response of hybrid plates are performed.


Sign in / Sign up

Export Citation Format

Share Document