The Nonlinear Effects of Political Advertising

Author(s):  
Keena Lipsitz ◽  
Javier Padilla
2004 ◽  
Author(s):  
Riki Takeuchi ◽  
David P. Lepak ◽  
Sophia Marinova ◽  
Seokhwa Yun

1966 ◽  
Vol 90 (11) ◽  
pp. 435-489 ◽  
Author(s):  
Vadim N. Tsytovich
Keyword(s):  

1980 ◽  
Vol 130 (2) ◽  
pp. 357 ◽  
Author(s):  
T.S. Velichkina ◽  
O.I. Vasil'eva ◽  
A.N. Izrailenko ◽  
I.A. Yakovlev

2019 ◽  
pp. 77-88
Author(s):  
V.I. Dyrda ◽  
◽  
S.M. Grebenyuk ◽  
S.P. Sokol ◽  
S.B. Slobodian ◽  
...  
Keyword(s):  

2018 ◽  
Vol 1 (3) ◽  
pp. 2
Author(s):  
José Stênio De Negreiros Júnior ◽  
Daniel Do Nascimento e Sá Cavalcante ◽  
Jermana Lopes de Moraes ◽  
Lucas Rodrigues Marcelino ◽  
Francisco Tadeu De Carvalho Belchior Magalhães ◽  
...  

Simulating the propagation of optical pulses in a single mode optical fiber is of fundamental importance for studying the several effects that may occur within such medium when it is under some linear and nonlinear effects. In this work, we simulate it by implementing the nonlinear Schrödinger equation using the Split-Step Fourier method in some of its approaches. Then, we compare their running time, algorithm complexity and accuracy regarding energy conservation of the optical pulse. We note that the method is simple to implement and presents good results of energy conservation, besides low temporal cost. We observe a greater precision for the symmetrized approach, although its running time can be up to 126% higher than the other approaches, depending on the parameters set. We conclude that the time window must be adjusted for each length of propagation in the fiber, so that the error regarding energy conservation during propagation can be reduced.


Author(s):  
Vladimir Zeitlin

After analysis of general properties of horizontal motion in primitive equations and introduction of principal parameters, the key notion of geostrophic equilibrium is introduced. Quasi-geostrophic reductions of one- and two-layer rotating shallow-water models are obtained by a direct filtering of fast inertia–gravity waves through a choice of the time scale of motions of interest, and by asymptotic expansions in Rossby number. Properties of quasi-geostrophic models are established. It is shown that in the beta-plane approximations the models describe Rossby waves. The first idea of the classical baroclinic instability is given, and its relation to Rossby waves is explained. Modifications of quasi-geostrophic dynamics in the presence of coastal, topographic, and equatorial wave-guides are analysed. Emission of mountain Rossby waves by a flow over topography is demonstrated. The phenomena of Kelvin wave breaking, and of soliton formation by long equatorial and topographic Rossby waves due to nonlinear effects are explained.


Sign in / Sign up

Export Citation Format

Share Document