scholarly journals Specialization of CDK regulation under DNA damage

Cell Cycle ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 143-144 ◽  
Author(s):  
Annika K. Weimer ◽  
Sascha Biedermann ◽  
Arp Schnittger
Keyword(s):  
2016 ◽  
Vol 37 (2) ◽  
Author(s):  
Michael J. Thwaites ◽  
Matthew J. Cecchini ◽  
Daniel T. Passos ◽  
Ian Welch ◽  
Frederick A. Dick

ABSTRACT The mammalian G1-S phase transition is controlled by the opposing forces of cyclin-dependent kinases (CDK) and the retinoblastoma protein (pRB). Here, we present evidence for systems-level control of cell cycle arrest by pRB-E2F and p27-CDK regulation. By introducing a point mutant allele of pRB that is defective for E2F repression (Rb1 G ) into a p27KIP1 null background (Cdkn1b −/−), both E2F transcriptional repression and CDK regulation are compromised. These double-mutant Rb1 G/G ; Cdkn1b −/− mice are viable and phenocopy Rb1 +/− mice in developing pituitary adenocarcinomas, even though neither single mutant strain is cancer prone. Combined loss of pRB-E2F transcriptional regulation and p27KIP1 leads to defective proliferative control in response to various types of DNA damage. In addition, Rb1 G/G ; Cdkn1b −/− fibroblasts immortalize faster in culture and more frequently than either single mutant genotype. Importantly, the synthetic DNA damage arrest defect caused by Rb1 G/G ; Cdkn1b −/− mutations is evident in the developing intermediate pituitary lobe where tumors ultimately arise. Our work identifies a unique relationship between pRB-E2F and p27-CDK control and offers in vivo evidence that pRB is capable of cell cycle control through E2F-independent effects.


2004 ◽  
Vol 171 (4S) ◽  
pp. 416-416
Author(s):  
Tamer M. Said ◽  
Shyam Allamaneni ◽  
Kiran P. Nallella ◽  
Rakesh K. Sharma ◽  
Sijo J. Parekattil ◽  
...  

Nature ◽  
2020 ◽  
Vol 579 (7800) ◽  
pp. 499-500
Author(s):  
Irene Gallina ◽  
Julien P. Duxin
Keyword(s):  

1999 ◽  
Vol 96 (1) ◽  
pp. 143-146 ◽  
Author(s):  
J.-P. Pouget ◽  
J.-L. Ravanat ◽  
T. Douki ◽  
M.-J. Richard ◽  
J. Cadet

2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


Sign in / Sign up

Export Citation Format

Share Document